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Abstract

Optical flow or optic flow is the pattern of apparent motion of objects,
surfaces, and edges in a visual scene caused by the relative motion between
an observer (an eye or a camera) and the scene. Optical Flow cannot be
computed locally, since only one independent measurement is available from
the image sequence at a point, while the flow velocity has two components.
A second constraint is needed.

Two methods of finding the optical flow velocity are presented which
assumes that the apparent velocity of the brightness pattern varies smoothly
almost everywhere in the image. One is a finite difference iterative method
based on the work of Horn and Schunck. In this method the image, we
minimize a functional proposed by Horn and Schunck and try to find a
solution to the problem by using discrete approximations of the image and
its derivatives.

We then try to implement a new method - the finite element method.
We again minimize the same functional as proposed by Horn and Schunck
and then finite dimensional approximations of the underlying solution space
is made and solution is computed on these spaces. Continuous and discrete
images are taken and their optical flow velocities are calculated. Both the
algorithms can handle image sequences that are quantized rather coarsely in
space. Both the methods are then compared based on the results obtained.

Finally we will consider the main aim of the thesis- to investigate cloud
motion. We will assume that our flow is potential and incompressible and
we will to recover the optical flow velocity by minimizing a new functional.
The numerical implementation is based on the better of the two methods
which were tested in the previous cases.
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Chapter 1

Introduction

Clouds are an important part of our daily life. Our food depends on the
harvest a farmer does which in turn depends on the amount of rain. Move-
ment of clouds and their growth rate will suggest the rate of rainfall in a
particular region. Hence study of cloud motion is of great significance to
meterologists. Also such a study can help in preventing natural calamities
to some extent. The aim of this thesis is precisely to study fluid motion
and try to apply it to cloud motion. In this thesis, we use the technique of
optical flow estimation to analyze moving objects.

To derive the velocity of an object in three dimensional space from a se-
quence of two dimensional images or optical flow, Horn and Schunck [HS81]
introduced the fluid dynamics constraint reducing the ambiguity of the ve-
locity field, enabling the recovery of an object’s motion. The idea is also
relevant to cloud motion, which is a special case of fluid motion and con-
sists of very complex motion dynamics [LZ]. Furthermore, its probability
distribution allows representation of the uncertainties in the optical flow
computation [ES91]. We then use first a modified version of the finite differ-
ence iterative scheme proposed by HS and test with a smooth image. Then
we use the finite element technique to recover the optical flow velocity for the
same image. We compare the two methods and finally the original model of
the optical flow is adjusted to cater to capturing the cloud motion satisfying
potential and incompressible flow.

1.1 What is Optical Flow

In our daily life we see motion of different sorts. Motions occur from micro
to macro scale level. For example motion of atoms in our body occurs at
a micro scale level whereas our planet Earth moves around the sun at a
macro scale level. Eating, drinking, sleeping, dancing, singing etc. all of the
activities induces motion. Such is human nature that we cannot do without
motion. But all of these are so so natural that we take it for granted. We
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need to understand the transformations our world is undergoing else we
would not be able to survive. The main difference between us and robots is
the concept of perception of changing objects. If robots were to exist in our
world, along with us, then they should also have this sense of perception.
What is required is a general and flexible representation of visual motion
that can be used for many purposes and can be computed efficiently [TB91].

Optical Flow is the distribution of movement of brightness pattern in
an image. It can arise from relative motion of objects and viewer. Thus,
a good bit of information can be obtained from the optical flow about the
spatial arrangement of the objects viewed and the rate of change of this
arrangement.

1.2 Relationship To Object Motion

The relationship between optical flow in the image plane and velocities of
objects in the 3-D world is not an easy proportion. For example, when a
changing picture is projected onto stationary screen we sense motion.

Conversely, a moving object may give rise to constant brightness pattern.
For example, an uniform sphere exhibits shading because its surface elements
are oriented in many directions. Yet when it is rotated, there is no optical
flow at any point of the image, as shading does not move with the surface.
(Fig 1.1).

(a) Original Image (b) Image after object was
rotated

Figure 1.1: Shading effect: The shading at the bottom of the object looks
same even though the object has been rotated. These images were taken at
TIFR-CAM, Bangalore

More specifically, consider the diagram in Figure 1.2 which illustrates
how the translation and rotation of the camera cause the projected location
p in the scene to move.
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Figure 1.2: A point P in the scene projects to a point in the [x, y] coordinate
system of the image plane of a camera centered at the origin of the camera
coordinate system [X,Y, Z], with its optical axis pointing in the direction
Z. The motion of the camera is described by its translation [TX , TY , TZ ]
and rotation [ΩX ,ΩY ,ΩZ ]: Courtesy ([MB92]).

Likewise, if point of a point P is moving independently, its projection
on the image plane will change, even when the camera is stationary. It is
this vector field, U(x, y) = [u(x, y), v(x, y)], describing the horizontal and
vertical image motion, that is to be recovered at every point in the image.

1.3 Discontinuities in optical flow

Discontinuities in optical flow pattern can help us to distinguish the move-
ment. Consider the image sequence in Figure 1.3 where a camera is trans-
lating parallel to the image plane.
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Figure 1.3: Discontinuities in optical flow helps in spotting motion of an
object efficiently: Courtesy ([MB92])

The flow field, in the top left of the figure, contains two distinct motions.
It suggests us that the soda can is moving more rapidly than the background.
So in the above case, discontinuites helped us to distinguish the movement
of the can from the background. So discontinuites help in segmentation of
images into regions that correspond to different objects [BA90a]; [SU87];
[TH85]; [TH82] or segment the scene into distinct objects [BR87]; [HB90];
[MB87];[PR90]; [PO80];[SC89a].

1.4 Problems In Computing The Optical Flow
Pattern

Optical flow cannot be computed at a point in the image independently of
neighbouring points without introducing additional constraints, because the
velocity field at each image point has two components while the change in

11



image brightness at a point in the image plane due to motion yields only
one constraint.

Consider for example a patch of a pattern where brightness varies as a
function of one image coordinate but not the other. Movement of the pattern
in one direction alters the brightness at a particular point, but motion in
the other coordinate yields no change. So components of movement in the
latter direction cannot be computed locally. So additional constraints must
be introduced to determine the flow fully.

1.5 Applications of optical flow

The application of optical flow includes the problem of inferring not only
the motion of the observer and objects in the scene, but also the structure of
objects and the environment. Since awareness of motion and the generation
of mental maps of the structure of our environment are critical components
of animal (and human) vision, the conversion of this innate ability to a
computer capability is similarly crucial in the field of machine vision.

Consider a five-frame clip of a ball moving from the bottom left of a
field of vision, to the top right. Motion estimation techniques can determine
that on a two dimensional plane the ball is moving up and to the right and
vectors describing this motion can be extracted from the sequence of frames.
For the purposes of video compression (e.g., MPEG), the sequence is now
described as well as it needs to be. However, in the field of machine vision,
the question of whether the ball is moving to the right or if the observer
is moving to the left is unknowable yet critical information. Not even if
a static, patterned background were present in the five frames, could we
confidently state that the ball was moving to the right, because the pattern
might have an infinite distance to the observer.
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Figure 1.4: Image demonstrating the principle of optical flow. Generated
by Doug Hatfield.

In this thesis our main aim is to apply optical flow techniques to one of
the most important and interesting research area: the area of cloud motion.

1.6 Application to Cloud Motion

Geostationary satellites are a valuable source of rainfall information due
to the availability of a global view of clouds at an acceptable spatial and
temporal resolution. However to retrieve the information from the satellite
images is a significant challenge. For example, precipitation peaks while the
cloud area is rapidly growing and reduces at the time of maximum cloud area
[SMS79], Visible (VIS) and Infrared (IR) channels of the satellites can see
only the top-of-the-clouds, not rain at the surface of the earth. Moreover,
how a cloud changes with time reflects atmospheric instabilities that occur
and most instabilities lead to precipitation. As a consequence, we need some
descriptions of cloud motion and pattern changes as an explicit link to rain
rate.
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Figure 1.5: Images from different channels of the MSG satellite. From left
to right, respectively, the VIS 0.8, WV 6.2, WV 7.3 and IR 10.8. Top row:
Images from the Vince hurricane. Bottom row: Images from the sequence
on June 5, 2004. Both sequences are from the North Atlantic area.

Meteosat Second Generation satellites replaced in 2002 the former Me-
teosat, providing a significantly increased amount of information as com-
pared to the previous version in order to continuously observe the whole
Earth. In this sense, MSG generates images every 15 min with a 10-bit
quantization, a spatial sampling distance of 3 km at subsatellite point in
11 channels, from the visible to the infrared channel, and 1 km in the high
resolution visible channel.
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Figure 1.6: In this image, we illustrate, using different greyscale values, the
original cloud structure layer classification estimated from the meteorological
satellite channels.

Among the most important applications, numerical weather prediction
combines the information from different channels, mainly from the VIS 0.8,
WV 6.2, WV 7.3 and IR 10.8 channels, to compute the displacement of the
clouds between two time instants, that constitute the most important source
of information for this application.

1.7 Other Applications of Optical Flow

1.7.1 Computer vision

In computer vision, one is often interested in other properties of the scene
that are unrelated to motion; for example, in the case of object recognition,
it may be necessary to detect perceptually significant image properties like
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intensity edges (upper right of Figure 1.3). Motion and intensity information
can be combined to improve the accuracy of motion segmentation [B92a];
[GP87];[HB90]; [TH80], and to distinguish between perceptual features that
represent structural properties of the scene and those that are purely surface
markings [B92a]. Additionally, if the optical flow is known, then tradition-
ally static computation of image properties, like intensity edges, can be made
dynamic and extended over an image sequence. The general problem of mo-
tion understanding, and in particular the computation of optical flow, has
been one of the most intensely studied areas of computer vision. Despite
rich mathematical foundations and steady progress, the results from years of
computing and using optical flow have resulted in few practical applications.

1.7.2 Visual Odometry

In robotics, visual odometry is the process of determining the position and
orientation of a robot by analyzing the associated camera images. It has
been used in a wide variety of robotic applications, such as on the Mars
Exploration Rovers. In navigation, odometry is the use of data from the
movement of actuators to estimate change in position over time through
devices such as rotary encoders to measure wheel rotations. While useful for
many wheeled or tracked vehicles, traditional odometry techniques cannot
be applied to robots with non-standard locomotion methods, such as legged
robots.

In addition, odometry universally suffers from precision problems, since
wheels tend to slip and slide on the floor creating a non-uniform distance
traveled as compared to the wheel rotations. The error is compounded when
the vehicle operates on non-smooth surfaces. Odometry reading become
increasingly unreliable over time as these errors accumulate and compound
over time. Most existing approaches to visual odometry are based on the
following stages.

� Acquire input images: using either single cameras, stereo cameras, or
omnidirectional cameras.

� Image correction: apply image processing techniques for lens distortion
removal, etc.

� Feature detection: define interest operators, and match features across
frames and construct optical flow field.

– Use correlation to establish correspondence of two images, and
no long term feature tracking.

– Feature extraction and correlation (Lucas–Kanade method).

– Construct optical flow field.
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� Check flow field vectors for potential tracking errors and remove out-
liers.

� Estimation of the camera motion from the optical flow.

– Choice 1: Kalman filter for state estimate distribution mainte-
nance.

– Choice 2: find the geometric and 3D properties of the features
that minimize a cost function based on the re-projection error
between two adjacent images. This can be done by mathematical
minimization or random sampling.

� Periodic repopulation of trackpoints to maintain coverage across the
image.

An alternative to feature-based methods is the ”direct” or appearance-based
visual odometry technique which minimizes an error directly in sensor space
and subsequently avoids feature matching and extraction. Another method,
coined ’visiodometry’ estimates the planar roto-translations between images
using Phase correlation instead of extracting features.

1.7.3 Video Compression

Video compression refers to reducing the amount of data used to represent
digital video images, and is a combination of spatial image compression and
temporal motion compensation. Video compression is an example of the
concept of source coding in Information theory.

Video compression typically operates on square-shaped groups of neigh-
boring pixels, often called macroblocks. These pixel groups or blocks of
pixels are compared from one frame to the next and the video compression
codec sends only the differences within those blocks. This works extremely
well if the video has no motion. A still frame of text, for example, can
be repeated with very little transmitted data. In areas of video with more
motion, more pixels change from one frame to the next. When more pixels
change, the video compression scheme must send more data to keep up with
the larger number of pixels that are changing. If the video content includes
an explosion, flames, a flock of thousands of birds, or any other image with a
great deal of high-frequency detail, the quality will decrease, or the variable
bitrate must be increased to render this added information with the same
level of detail.

Video is basically a three-dimensional array of color pixels. Two di-
mensions serve as spatial (horizontal and vertical) directions of the moving
pictures, and one dimension represents the time domain. A data frame is
a set of all pixels that correspond to a single time moment. Basically, a
frame is the same as a still picture. Video data contains spatial and tem-
poral redundancy. Similarities can thus be encoded by merely registering
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differences within a frame (spatial), or between frames (temporal). Spatial
encoding is performed by taking advantage of the fact that the human eye
is unable to distinguish small differences in color as easily as it can perceive
changes in brightness, so that very similar areas of color can be averaged
out in a similar way to jpeg images. With temporal compression only the
changes from one frame to the next are encoded as often a large number of
the pixels will be the same on a series of frames.

1.8 Overview of the thesis

Chapter 2. The Horn-Schunck optical flow estimation method is reviewed
and applied on a simple example to test the method.The image taken
as an example is a compact distribution in the unit square in R2 and
moved with a constant velocity. Two cases are considered: in the
first case, discrete image derivatives are taken and in the second case,
continuous image derivatives are taken. Then the finite difference it-
erative method is applied to calculate the optical flow velocities and
the results are analyzed.

Chapter 3. In this chapter, the mathematical theory of the Horn-Schunck
method is developed, with Dirichlet and Neumann boundary condi-
tions on the optical flow velocities, and existence and uniqueness of
the solution to the optical flow problem is proved.

Chapter 4. The finite difference method in Chapter 2 did not give very
good results and so another method was tried out using finite elements
and the same example was tested and the results were analyzed.

Chapter 5. Finally, our main aim was to apply optical flow estimation
method to cloud motion. So we conclude by considering a special
case of cloud motion: we considered the flow to be potential and in-
compressible and then modified the HS method to apply it to two
examples:- the first one is an object given by a compact distribution
moving in the unit square in R2 and the second one as flow of a fluid
due to a vortex field situated outside the domain i.e the unit square.
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Chapter 2

Finite Difference Iterative
Method

2.1 Introduction

In this chapter we want to determine the optical flow velocity of a given
brightness pattern using the finite difference method. The corresponding
method was developed by Horn and Schunck[HS81].Here gradient-based ap-
proaches are used.

2.2 Domain of the restricted problem

We consider a relatively simple world where apparent velocity of brightness
patterns can be directly identified with the movement of surfaces in the
scene. To avoid variations in brightness due to shading effects we assume the
surface is flat. We also assume that incident illumination is uniform across
the surface. Then the brightness at a point of the image is proportional to
the reflectance of surface at the given point. Also we assume initially that
reflectance varies smoothly and has no spatial discontinuities which would
imply that the image brightness is differentiable.

Due to all these restrictions, the motion of brightness patterns in the
image is determined directly by motion of corresponding points on surface
of the object.

2.3 Constraints on the motion of an image

2.3.1 Data conservation

The approach of [HS81] exploits the assumption of data conservation (See
Fig 2.1) i.e. image intensity corresponding to a small image region remains
the same, although the location of the region may change.
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Figure 2.1: Data Conservation assumption. The highlighted region in the
right image looks roughly the same as the region in the left image, despite
the fact that it has moved: Courtesy ([MB92]).

Our given data is a sequence of brightness patterns E(x, y, t) where (x, y)
represents the spatial coordinates and t is the time coordinate. As brightness
of a particular point in the pattern is constant,so

dE

dt
= 0

By the chain rule for derivatives (See Appendix A) we have,

∂E

∂x
.
dx

dt
+
∂E

∂y
.
dy

dt
+
∂E

∂t
= 0

So we have the data conservation constraint,

Exu+ Eyv + Et = 0 (2.1)

where

u =
dx

dt
, v =

dy

dt
.

The equation (2.1) can also be written as (Ex, Ey) · (u, v) = −Et.
or

Et +∇E·U = 0 where U =

(
u
v

)
This means the solution set of (2.1) defines a line in the u−v space which

is perpendicular to the intensity spatial gradient ∇E. The component of the
optical flow in the direction of the brightness gradient(Ex, Ey) equals

−Et√
E2
x + E2

y
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Figure 2.2: The aperture problem: the solutions of (2.1) define a line in
the (u, v)-space. The vectors w1 and w2 are possible solutions: Courtesy
([MB92])

The problem is ill-posed as we cannot determine the component of move-
ment in the direction of iso-brightness contours, at right angles to brightness
gradient(one equation and two unknowns). This is commonly referred to as
the aperture problem.So the flow velocity (u, v) cannot be computed locally
without additional constraints
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Figure 2.3: The basic rate of change of image brightness equation constrains
the optical flow velocity. The velocity (u, v) has to lie along a certain line
perpendicular to the brightness gradient vector(Ex, Ey) in the velocity space:
Courtesy ([HS81]).

2.3.2 Smoothness constraints

The data conservation constraint (2.1) alone is not sufficient to accurately
recover optical flow. First, local motion estimates, based on data conserva-
tion, may only partially constrain the solution. Consider a motion of a line in
Figure 2.3. Within a small region, the data conservation constraint cannot
uniquely determine the motion of the line; an infinite number of interpreta-
tions are consistent with the constraint. This is commonly referred to as the
aperture problem [H86]. This can be seen in Fig 2.4. In the first picture the
original image pattern is viewed through an aperture. In the second picture
the image is moved up and then viewed through the aperture. In the third
picture the image is moved to the left and viewed through the aperture. In
all the three cases we see that through the aperture the image pattern is
the same. Another illustration is shown in Fig 2.5 with the interpretations
of the movement of the brightness pattern. Hence we cannot predict the
motion of the image pattern when viewed through a small aperture.
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(a) Original Image (b) Image moved up (c) Image moved left

Figure 2.4: Illustration of the aperture problem.

Figure 2.5: Another illustration of the aperture problem

Second and more importantly, motion estimates based on data conser-
vation constraint are very sensitive to noise in the images, particularly in
regions where there is very little spatial variation.

To overcome these problems, many approaches have exploited a spatial
coherence assumption:

Neighbouring points in the scene typically belong to the same surface
and hence have similar velocities. Since neighbouring points in the scene
project to neighbouring points in the image plane, we expect optical flow to
vary smoothly. This assumption is typically implemented as the smoothness
constraint.

So here we try to limit the difference between the flow velocity at a point
and the average velocity over a small neighbourhood, containing the point.
Equivalently, we can minimize the sum of the squares of the Laplacians of
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x and y components of the flow. We use this fact while calculating the
minimization equations.

2.4 Problem statement

So with all the constraints taken care of, finally we can formulate the problem
statement.

Let E : ΩÖR+ −→ R, be an image sequence, where Ω ⊆ R2 is a bounded
domain of the spatial coordinates and R+ is the domain of the time coordi-
nate.

HS estimated the optical flow, the field U of optical velocities over Ω, by
minimizing the functional,

J(U) =
1

2

∫
Ω

(∇E·U + Et)
2dxdy +

K

2

∫
Ω
‖∇U‖2 (2.2)

where U = (u, v).
The first term in the functional is the data conservation constraint and

the second term in the functional is the smoothness constraint. K > 0 is a
parameter, called Smoothing Parameter,which is used to make the order of
both the terms same so that each of them has a significant contribution in
calculation of the flow velocities.

The boundary conditions on the flow velocity could be either Dirichlet
or Neumann. Neumann boundary conditions will be the preferred choice
as we usually do no expect the flow velocity to attain a particular value
on the boundary. We only expect the change of the flow velocity across
the boundary to be constant.But we will also deal with Dirichlet boundary
conditions where we assume that there is no flow across the boundary.

The Euler-Lagrange equations obtained by the minimization of J are

(Et +∇E·U)Ex −K∆u = 0

(Et +∇E·U)Ey −K∆v = 0
(2.3)

(See Section 3.2).

2.5 Discretization

Let Ω be discretized by the unit spacing grid and the grid points be indexed
by (xi, yj) where 1 ≤ i, j ≤ N . Let the time axis be discretized by the unit
spacing grid and indexed by tk, 1 ≤ k ≤M .
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2.6 Estimating the partial derivatives of E

Horn-Schunck proposed the idea of replacing the derivatives of the image
E with their finite difference approximations. The following estimates are
used. Let Ex(xi, yj , tk) = Ei,j,kx , Ey(xi, yj , tk) = Ei,j,ky , Et(xi, yj , tk) = Ei,j,kt

Each of the estimates is the average of the first four differences taken over
adjacent measurements in the cube as shown in (Fig 2.6).

Ei,j,kx ≈ 1

4
{Ei,j+1,k − Ei,j,k + Ei+1,j+1,k − Ei+1,j,k + Ei,j+1,k+1

− Ei,j,k+1 + Ei+1,j+1,k+1 − Ei+1,j,k+1}

Ei,j,ky ≈ 1

4
{Ei+1,j,k − Ei,j,k + Ei+1,j+1,k − Ei,j+1,k + Ei+1,j,k+1

− Ei,j,k+1 + Ei+1,j+1,k+1 − Ei,j+1,k+1}

Ei,j,kt ≈ 1

4
{Ei,j,k+1 − Ei,j,k + Ei+1,j,k+1 − Ei+1,j,k + Ei,j+1,k+1

− Ei,j+1,k + Ei+1,j+1,k+1 − Ei+1,j+1,k}

(2.4)

where i corresponds to the x-axis direction, j corresponds to the y-axis
direction and k correponds to the time axis and Ei,j,k represents the value
of the image intensity at the (i, j) position and at the kth stage i.e. Ei,j,k =
E(xi, yj , tk).

2.7 Estimating the Laplacian of flow velocities

∆u and ∆v can be approximated using

∆u(xi, yj , tk) ≈ κ(ui,j,k − ui,j,k)

∆v(xi, yj , tk) ≈ κ(vi,j,k − vi,j,k)

where

ui,j,k =
1

6
{ui−1,j,k + ui,j+1,k + ui+1,j,k + ui,j−1,k}

+
1

12
{ui−1,j−1,k + ui−1,j+1,k + ui+1,j+1,k + ui+1,j−1,k}.

vi,j,k =
1

6
{vi−1,j,k + vi,j+1,k + vi+1,j,k + vi,j−1,k}

+
1

12
{vi−1,j−1,k + vi−1,j+1,k + vi+1,j+1,k + vi+1,j−1,k}.

(2.5)

The proportionality factor κ = 3 if the averages are computed as above
and if the grid spacing interval is of unit length. (Fig 2.7) illustrates the
assignment of weights to neighbouring points.
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Figure 2.6: The 3 partial derivatives of image brightness at the center of the
cube are each estimated from the average of first differences along 4 parallel
edges of the cube. Here the column index j corresponds to the x-direction
in the image, the row index i to the y-direction, while k lies in the time
direction: Courtesy ([HS81]).
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Figure 2.7: The Laplacian is estimated by subtracting the value at a
point(represented in the figure by the central square with weight -1) from
a weighted average of the values at neighbouring points. Shown here are
suitable weights by which values can be multiplied: Courtesy ([HS81]).

2.8 Minimization

With all the approximations as shown in Sec 2.6 and Sec 2.7, the Euler-
Lagrange Equations in (2.3) can be written as

(K + E2
x)u+ ExEyv = (Ku− ExEt)

ExEyu+ (K + E2
y)v = (Kv − EyEt)

(2.6)

or

(K + E2
x + E2

y)(u− u) = −Ex(Exu+ Eyv + Et)

(K + E2
x + E2

y)(v − v) = −Ey(Exu+ Eyv + Et)
(2.7)

The discretized Euler Lagrange equations are as follows

(K + (Ei,j,kx )2 + (Ei,j,kx )2)(ui,j,k − ui,j,k) = −Ei,j,kx (Ei,j,kx ui,j,k + Ei,j,ky vi,j,k + Ei,j,kt )

(K + (Ei,j,kx )2 + (Ei,j,kx )2)(vi,j,k − vi,j,k) = −Ei,j,kx (Ei,j,kx ui,j,k + Ei,j,ky vi,j,k + Ei,j,kt )

(2.8)

This shows that the value of the flow velocity (u, v) which minimizes the
error ε2 lies in the direction towards the constraint line along a line that
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intersects the constraint line at right angles. This relationship is illustrated
geometrically in Fig. 2.8. The distance from the local average is propor-
tional to the error in the basic formula for rate of change of brightness when
u, v are substituted for u and v. Finally we see that K plays a significant
role only for the areas where the brightness gradient is small, preventing
haphazard adjustments to the estimated flow velocity occasioned by noise
in the estimated derivatives.

Figure 2.8: The value of the flow velocity which minimizes the error lies on
a line drawn from the local average of the flow velocity perpendicular to the
constraint line: Courtesy ([HS81]).
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2.9 Discretized iterative scheme

The discretized Euler-Lagrange equations (2.8) lead to the following scheme
for solving the optical flow problem

un+1
i,j,k = uni,j,k −

Ei,j,kx (Ei,j,kx uni,j,k + Ei,j,ky vni,j,k + Ei,j,kt )

K + (Ei,j,kx )2 + (Ei,j,ky )2

vn+1
i,j,k = vni,j,k −

Ei,j,ky (Ei,j,kx uni,j,k + Ei,j,ky vni,j,k + Ei,j,kt )

K + (Ei,j,kx )2 + (Ei,j,ky )2

(2.9)

where Ei,j,kx ,Ei,j,ky ,Ei,j,kt are given by (2.4) and uni,j,k,v
n
i,j,k are given by (2.5).

This type of scheme is an iterative scheme as we update the old value of
the optical flow velocity with the new one using the above scheme depending
on the accuracy limit we want the scheme to satisfy.

2.10 Introduction of Courant-Friedrich-Lewey(CFL)
condition

Whatever we have done uptil now was with unit spacing grid. We would
now want to discretize our grid arbitrarily with x−spacing as Mx, y-spacing
as My. To choose Mt, we now introduce some conditions which will depend
on Mx and My. This has to be done so that the images we enter in our code
should be such that they remain close to each other depending on the grid
size. These conditions are called CFL conditions as they were invented by
the trio- Courant, Friedrich and Lewey. The natural choice for CFL condi-
tion is that the distance covered by the image in time Mt will be less than the
Mx and My so that two consecutive images remain in the same grid element.

So,

|uMt| ≤ Mx = h

|vMt| ≤ My = h

This implies,

|Mt| ≤ h min

{
1

|u|
,

1

|v|

}

Since we do not know anything apriori about min
{

1
|u| ,

1
|v|

}
so we will sub-

stitute min
{

1
|u| ,

1
|v|

}
by some CFL Number so that Mt(≤ h * CFL Number)

is sufficiently small.
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2.11 The case we consider

The iterative formula (2.9) holds for Mx = My = Mt = 1.
For our case we choose Mx = My = h and our M t will be chosen such

that it satisfies some CFL condition.
Then we have:-

u(
K

(Mx)2
+ E2

x) + ExEyv = (
Ku

(Mx)2
− ExEt).

v(
K

(My)2
+ E2

y) + ExEyu = (
Kv

(My)2
− EyEt).

So we can write the equation in matrix notations as follows:-

(
K

(Mx)2
+ E2

x ExEy

ExEy
K

(My)2
+ E2

y

)(
u
v

)
=


Ku

(Mx)2
− ExEt

Kv
(My)2

− EyEt



Let A =

(
K

(Mx)2
+ E2

x ExEy

ExEy
K

(My)2
+ E2

y

)

Then Det(A) =
α4

(MxMy)2
+K

[
E2
x

(My)2
+

E2
y

(Mx)2

]

So,

(
u
v

)
=

1

Det(A)

(
K

(My)2
+ E2

y −ExEy
−ExEy K

(Mx)2
+ E2

x

)
Ku

(Mx)2
− ExEt

Kv
(My)2

− EyEt



This gives,

u =
1

K
(MxMy)2

+
[

E2
x

(My)2
+

E2
y

(Mx)2

] [ u

(Mx)2

(
K

(My)2
+ E2

y

)
− Ex

(My)2
(vEy + Et)

]

v =
1

K
(MxMy)2

+
[

E2
x

(My)2
+

E2
y

(Mx)2

] [ v

(My)2

(
K

(My)2
+ E2

x

)
− Ey

(Mx)2
(uEx + Et)

]
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Now let Mx = My = h and let Ex = Ex.Mx, Ey = Ey.My, Et = Et.Mt

Then

(
u
v

)
=

1

Det(A)

(
α4u−KλExEt +KuE

2
y − ExEyKv

α4v −KλEyEt +KvE
2
x − ExEyKu

)

where A =

(
K + E

2
x ExEy

ExEy K + E
2
y

)
, Det(A) = α4+K

(
E

2
x + E

2
y

)
and λ =

h

Mt
.

So we have,

u =
1

K + E
2
x + E

2
y

[
(K + E

2
x + E

2
y)u− Ex(Exu+ Eyv + λEt)

]
v =

1

K + E
2
x + E

2
y

[
(K + E

2
x + E

2
y)v − Ey(Exu+ Eyv + λEt)

] (2.10)

2.12 The modified discretized iterative formula

The modified discretized iterative solution is given by:-

un+1
i,j,k = uni,j,k −

E
i,j,k
x (E

i,j,k
x uni,j,k + E

i,j,k
y vni,j,k + λE

i,j,k
t )

K + (E
i,j,k
x )2 + (E

i,j,k
y )2

vn+1
i,j,k = vni,j,k −

E
i,j,k
y (E

i,j,k
x uni,j,k + E

i,j,k
y vni,j,k + λE

i,j,k
t )

K + (E
i,j,k
x )2 + (E

i,j,k
y )2

(2.11)

where E
i,j,k
x = Ei,j,kx ·Mx, E

i,j,k
y = Ei,j,ky ·My, E

i,j,k
t = Ei,j,kt ·Mt and Ei,j,kx ,Ei,j,ky ,Ei,j,kt

are given by (2.4), uni,j,k,v
n
i,j,k are given by (2.5), λ= h

Mt .

2.13 Convergence of Horn and Schunck Optical
Flow estimation method

We have obtained an iterative formula for finding out the solution to the
optical flow problem. The next important thing is whether this method con-
verges or not. It is directly proved in [MM04] that the iterative equations
(2.9) (commonly referred to as the Jacobi iterations) converge. Modifying
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the proof we can find that (2.11) also converges. So we can proceed to im-
plement this method using C program.

2.14 Programming implementation

We have already obtained the iterative formula. We have chosen our CFL
Number as 1.0 and so Mt should be chosen s.t. Mt ≤ h.

Our domain is the unit square in R2 i.e. [0, 1]Ö[0, 1].

We have taken our image at time t0 to be E0 defined as:-

E0(x, y) = E(x, y, 0) = e[−50∗{(x−0.5)2+(y−0.5)2}]

and for testing the accuracy of the method we move the image with a pre-
defined constant velocity of u = 1.0 and v = 1.0

So at time t, the image will be given by,

E(x, y, t) = E(x− ut, y − vt, 0) = E0(x− ut, y − vt)

using the characteristic method

So for implementing the above iterative method, we take 2 successive
images E(x, y, 0) and E(x, y,Mt) at times 0 and Mt respectively and try to
recover the constant velocities as we expect.

We implement this method numerically using the C programming lan-
guage in Ubuntu and compile it using the gcc compiler.

2.15 Programming data

DOMAIN:- Unit Square in R2 i.e. [0, 1]Ö[0, 1].

IMAGE:-

E(x, y, t) =e[−50∗{(x−1.0∗t−0.5)2+(y−1.0∗t−0.5)2}],

(x, y) ∈ [0, 1]Ö[0, 1], t ∈ R+

h :- .01010101
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CFL NUMBER:- 1.0

Time step Mt:- 0.01

SMOOTHING PARAMETER K:- 1.0

2.16 Results obtained

The following are the given images at time t = 0

Figure 2.9: The given intial image.The central dot represents the
point(0.5,0.5).

Figure 2.10: The magnified figure of the given initial image.
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2.16.1 With discrete image derivatives

First we use images at two consecutive times 0 and Mt to calculate the
derivatives of E. We obtain the following results:-

Figure 2.11: The image at time Mt.Notice how the image has moved w.r.t
to the central dot.

Figure 2.12: The magnified figure of the image at time Mt.
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Figure 2.13: The velocities obtained at time Mt The length of the arrows
represent magnitude of velocity at that point and the direction of the arrows
represent the velocity vector direction.

Figure 2.14: The image obtained at time Mt by moving the initial image
with the obtained velocities
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Figure 2.15: Magnification of the image obtained by moving the initial image
with the obtained velocities

2.16.2 With continuous image derivatives

Since the image we have entered is C∞ so we pass on the actual derivatives
of the image at time Mt

2 in the program.

Figure 2.16: The velocities obtained at time Mt
2 .

36



Figure 2.17: Image obtained at time Mt
2 by moving the initial image with

the obtained velocities.

Figure 2.18: Magnification of the image obtained by moving the initial image
with the obtained velocities.

2.17 Conclusions

The pictures shows the results obtained. We have used Neumann Boundary
conditions in our program for the way u and v are calculated at the point
i, j, k they use the surrounding 8 neighbours and u and v are updated using
u and v. When i, j, k represents the position adjacent to the boundary
then we assume that the value of u on the boundary equals u(i, j.k). In
this way there is no change of flux acroos the boundary and hence we have
Neumann Boundary condition. (Fig 2.9) and (Fig 2.10) represents the given
image at time 0. For the first case we use the discrete formulation of the
derivatives using the initial given image and the image at time Mt and then
we implement the program. The results are shown from (Fig 2.11) to (Fig
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2.15). The velocity vectors obtained are proper in a neighbourhood of the
line (y − 0.5) = (x− 0.5) but in other regions we see that velocities are not
proper as we had expected constant velocities u = 1.0, v = 1.0. That is why
the middle portion of the image has moved in the proper direction as we
expect to but the other parts of the image move in other directions. We
already know the exact velocity with which we have moved the initial image
and so we calculate the relative L2 error in the obtained velocities w.r.t the
exact ones. The relative L2 error in the velocity was found out to be
1.025654 which is of order 1.

So in an attempt to decrease the order of L2 error we have approximated
the image derivatives as well as the laplacians of the velocities using finite
differences. We cannot do without the approximations of the laplacians but
what we can do is to have the correct image derivatives. Since our image
is C∞, so we can calculate its derivatives w.r.t x, y, t and use them in the
program. We pass the image derivatives at time Mt

2 and then calculate the
velocities.The results are shown from (Fig 2.16) to (Fig 2.18). Using those
velocities we move the initial image and find the image formed at time Mt

2 .
We again find the same results as before. The L2 error in the velocity
was found out to be 1.025178 which has decreased but is still of order 1.

We also tried changing the smoothing parameter α and the following
results are obtained

α L2 error
Approximate Image Derivatives Exact Image Derivatives

0.2 1.025654 1.01615
0.4 1.025654 1.022831
0.6 1.025654 1.024355
0.8 1.025654 1.024915
1 1.025654 1.025178

1.2 1.025654 1.025324
1.4 1.025654 1.025412
1.6 1.025654 1.025470
1.8 1.025654 1.025509
2 1.025654 1.025537

Table 2.1: Variation of relative L2 error with the smoothing parameter α

The above given data suggests that the relative L2 error is of order 1
and it is not to improve irrespective of different values of α. So the problem
could be for the approximation of the laplacians of the velocities by finite
differences. In an attempt to reduce the order of the relative error we could
try the finite element method as it approximates the space and not the
solution. So with this idea we proceed onto implementing the finite element
method to calculate the optical flow velocities. But before doing that we
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would want to establish the existence and uniqueness of the solution of the
optical flow problem and also derive some estimates on the solution.
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Chapter 3

Existence Of Minimizer

3.1 Introduction

So far what we have seen is just a numerical implementation of minimisation
of optical flow functional (2.2) in using finite difference method. But we
found that the results were not that accurate. So our idea was to implement
the finite element method. But before doing that we will try and show that a
minimizer exists for the optical flow functional under some given conditions
and also we will derive some estimates on the solution.

3.2 Formulation Of The Problem

We set Ω to be the unit square [0,1]Ö[0,1] as Ω. We are to minimize the
functional J(U) over the field of optical flow velocities U in Ω where J(U)
is given by (2.2).

We assume our image E ∈W 1,∞(Ω) and hence in L2(Ω) as Ω is bounded
because ∫

Ω
E2dxdy ≤ ‖E‖2L∞

∫
Ω
dxdy

≤ ‖E‖2L∞

<∞

as |Ω| =
∫

Ω dxdy = 1.

Theorem 3.2.1. The functional given in (2.2) is convex with respect to U .

Proof. Let

U1 =

(
u1

v1

)
and U2 =

(
u2

v2

)
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and let (.) denote the usual inner product in R2. Then for 0 ≤ α ≤ 1 we
have,

J (αU1 + (1− α)U2)

=
1

2

∫
Ω

(∇E·(αU1 + (1− α)U2)) + Et)
2dxdy +

K

2

∫
Ω
‖∇(αu1 + (1− α)u2)‖2+‖∇(αv1 + (1− α)v2)‖2 dxdy

≤ 1

2

∫
Ω

(∇E·(αU1 + (1− α)U2))2 + (α+ 1− α)E2
t + 2Et(∇E·(αU1 + (1− α)U2))dxdy +

K

2

∫
Ω
‖∇(αu1 + (1− α)u2)‖2+‖∇(αv1 + (1− α)v2)‖2 dxdy

=
1

2

∫
Ω

(∇E·(αU1 + (1− α)U2))2 + (α+ 1− α)E2
t + 2Et(∇E·(αU1 + (1− α)U2))dxdy +

K

2

∫
Ω
‖(α∇u1 + (1− α)∇u2)‖2 + ‖(α∇v1 + (1− α)∇v2)‖2dxdy

Now,∫
Ω
Et(∇E·(αU1 + (1− α)U2))dxdy

= α

∫
Ω
Et(∇E·U1)dxdy + (1− α)

∫
Ω
Et(∇E·U2)dxdy

Let a, b ∈ R and A, B ∈ V, an inner product space with inner product (·)V
and norm ‖.‖

We have,

(αa+ (1− α)b)2 = α2a2 + (1− α)2b2 + α(1− α)2ab

≤ α2a2 + (1− α)2b2 + α(1− α)(a2 + b2)

= αa2 + (1− α)b2, where 0 ≤ α ≤ 1.

and

‖(αA+ (1− α)B)‖2 = α2‖A‖2 + (1− α)2‖B‖2 + α(1− α)2(A·B)V

≤ α2‖A‖2 + (1− α)2‖B‖2 + α(1− α)(‖A‖2 + ‖B‖2)

= α‖A‖2 + (1− α)‖B‖2, where 0 ≤ α ≤ 1.

41



Therefore,

K

2

∫
Ω
‖(α∇u1 + (1− α)∇u2)‖2 + ‖(α∇v1 + (1− α)∇v2)‖2dxdy

≤ K

2
{α
∫

Ω
‖∇u1‖2 + ‖∇u2‖2dxdy + (1− α)

∫
Ω
‖∇v1‖2 + ‖∇v2‖2dxdy}

Again,∫
Ω

(∇E·(αU1 + (1− α)U2))2 =

∫
Ω

(α(∇E·U1) + (1− α)(∇E·U2))2dxdy

≤ α
∫

Ω
(∇E·U1)2dxdy + (1− α)

∫
Ω

(∇E·U1)2dxdy

This gives,

J(αU1 + (1− α)U2) ≤ αJ(U1) + (1− α)J(U2) ∀ 0 ≤ α ≤ 1 (3.1)

So J is a convex functional w.r.t U .

Theorem 3.2.2. The unique minimizer of J will be given by the unique
solution of J ′(U) = 0 ,where ′ denotes the Gateaux Derivative.

Proof. See Appendix B

In the following we determine the unique solution of J ′(U) = 0.

Now J is the functional as given in (2.2). So,

J(U+εU) =
1

2

∫
Ω

(∇E·(U+εU))+Et)
2dxdy+

K

2

∫
Ω
‖∇(u+ εu)‖2+‖∇(v + εv)‖2 dxdy

where U =

(
u
v

)
∈ Z = (H1(Ω))2.

=
1

2

∫
Ω
E2
t +2Et(∇E·(U+εU))+(∇E·U)2 +ε2(∇E·U)2 +2ε(∇E·U)(∇E·U)

+
K

2

∫
Ω
‖∇u‖2 + ε2‖∇u‖2 + 2ε(∇u·∇u) + ‖∇v‖2 + ε2‖∇v‖2 + 2ε(∇v·∇v)

This implies,

J(U + εU)− J(U) =
1

2

∫
Ω

2εEt(∇E·U) + ε2(∇E·U)2 + 2ε(∇E·U)(∇E·U)
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+
K

2

∫
Ω

2ε(∇u·∇u) + 2ε(∇v·∇v) + ε2‖∇u‖2 + ε2‖∇v‖2

So we have,

lim
ε→0

J(U + εU)− J(U)

ε
=

∫
Ω

(Et + (∇E·U))(∇E·U) +K

∫
Ω

(∇u·∇u) + (∇v·∇v)

(3.2)

Now applying integration by parts we get,∫
Ω

(∇u·∇u) = −
∫

Ω
(u∆u) +

∫
∂Ω

(
∂u

∂ν
.u),∫

Ω
(∇v·∇v) = −

∫
Ω

(v∆v) +

∫
∂Ω

(
∂v

∂ν
·v)

If we assume zero Dirichlet or Neumann boundary conditions on the flow
velocity U we have, ∫

∂Ω
(
∂u

∂ν
·u) = 0 =

∫
∂Ω

(
∂v

∂ν
·v)

This gives,

lim
ε→0

J(U + εU)− J(U)

ε
=

∫
Ω

(Et + (∇E·U))(∇E·U)−K
∫

Ω
(∆U ·U)

Since U is arbitrary, so J ′(U)(U) = 0 gives the optimality conditions

(Et +∇E·U)Ex −K∆u = 0

(Et +∇E·U)Ey −K∆v = 0

}
(3.3)

which are the required Euler-Lagrange equations for finding the minimum
of the functional J .

Equations (3.3) can be written as,

−∆u+
E2
x

K
u+

ExEy
K

v = −ExEt
K

−∆v +
ExEy
K

u+
E2
y

K
v = −EyEt

K

In matrix notation we have,

LU +BU = F, (3.4)
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where U =

(
u
v

)
, L =

 −∆ 0

0 −∆

 , B = 1
K

 E2
x ExEy

ExEy E2
y

 ,

F = 1
K

(
−ExEt
−EyEt

)
.

3.3 Existence and Uniqueness Of Solution Of J′(U)
= 0

We take H = (L2(Ω))2 with the corresponding norm ‖.‖H and Z = (H1(Ω))2

with the corresponding norm ‖.‖Z and ‖.‖L2 represents the usual norm
L2(Ω).

3.3.1 Zero Dirichlet boundary condition for velocity

In this case U ∈ (H1
0 (Ω))2.

Theorem 3.3.1. There exists an unique solution for J ′(U) = 0 in H where
J is the functional as in (2.2) and it is assumed that the velocity of the
optical flow satisfies zero Dirichlet boundary condition.

Proof. By (3.4) we have,

LU +BU = F

This gives us,,

U = −L−1BU + L−1F

= G(U)

We form the following iteration

Un+1 = G(Un) (3.5)

So if we can show that G : H → H is a contraction mapping, then there
will exist a fixed point U0 of (3.5) which is also unique.

‖G(U1)−G(U2)‖H = ‖L−1B(U1 − U2)‖H

=

∥∥∥∥∥∥
 (−∆)−1E2

x(u1 − u2)

(−∆)−1E2
x(u1 − u2)

∥∥∥∥∥∥
H
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As we have asssumed that the space where U lies is (H1
0 (Ω))2, so we have

‖(−∆)−1F‖H ≤ C1‖F‖H

where C1 is a constant depending on F and Ω. Therefore,

‖G(U1)−G(U2)‖H ≤
C1

K

{∥∥E2
x(u1 − u2)

∥∥
L2 +

∥∥E2
y(v1 − v2)

∥∥
L2

}

≤ C1

K

{
‖Ex‖2L∞ ‖(u1 − u2)‖L2 + ‖Ey‖2L∞ ‖(v1 − v2)‖L2

}

≤ C

K
{‖(u1 − u2)‖L2 + ‖(v1 − v2)‖L2} ,where C = max

{
‖Ex‖2L∞ , ‖Ey‖2L∞ , C1

}
< ‖U‖H , if K > C

which can be done as K is a smoothing parameter to be chosen by us.
So G : H → H is a contraction mapping.
Hence, J ′(U) = 0 has an unique solution in H.

We will show later in Section 3.4 that the unique solution obtained above
belongs to Z.

3.3.2 Zero Neumann boundary condition for velocity

Next we assume that we have Neumann boundary condition for the optical
flow velocity.

In general, we might not be able to show existence and uniqueness of
solution for (3.4). But under certain hypothesis we will show that problem
(3.4) has an unique solution.

We write J ′(U)[V ] = 0 ∀V ∈ Z as A(U, V ) = F (V ) where A(U, V ) is
a symmetric bilinear form on ZÖZ associated to the functional (2.2) and
F (V ) is a linear form on Z
So we have

A(U, V ) =

∫
Ω

(∇E.U)(∇E.V ) +K

∫
Ω
∇u1.∇v1 +∇u2.∇v2 (3.6)

and

F (V ) = −
∫

Ω
Et·(∇E·V ) (3.7)

where U =

(
u1

u2

)
V =

(
v1

v2

)
.
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Theorem 3.3.2. The Bilinear form A(U, V ) as given in (3.6) is continuous
∀ U, V ∈ Z.

Proof.

|A(U, V )| = |
∫

Ω
(∇E·U)(∇E·V ) +K

∫
Ω

(∇u1·∇v1 +∇u2·∇v2)|

≤ ‖∇E·U‖L2‖∇E·V ‖L2 +K(‖∇u1‖H‖∇v1‖H + ‖∇u1‖H‖∇u1‖H)

By the inequality,(a+ b)2 ≤ (a+ b)2 + (a− b)2 = 2(a2 + b2), we have,

‖∇E.U‖L2 ≤
[
2‖Ex‖2L∞

∫
Ω
u2

1 + 2‖Ey‖2L∞

∫
Ω
u2

2

] 1
2

≤
[
2 max

{
‖Ex‖2L∞ , ‖Ey‖2L∞

}] 1
2 ‖U‖H

and we obtain

|A(U, V )| ≤ C1(‖U‖H‖V ‖H + ‖∇u1‖H‖∇v1‖H + ‖∇u2‖H‖∇v2‖H)

≤ C1[‖U‖2H + ‖∇u1‖2H + ‖∇u2‖2H ]
1
2 .[‖V ‖2H + ‖∇v1‖2H + ‖∇v2‖2H ]

1
2

= C1‖U‖Z .‖V ‖Z

where,

C1 = 2 max
{

2‖Ex‖2L∞ , 2‖Ey‖2L∞ , K2
}

.

Hence A(U, V ) is continuous ∀ U, V ∈ Z

Theorem 3.3.3. The linear form F (V ) as in (3.7) is continuous ∀ V ∈ Z.

Proof.

|F (V )| = | −
∫

Ω
Et(∇E·V )|

≤ ‖Et∇E‖H‖V ‖H

≤ ‖Et∇E‖H‖V ‖Z

≤ ‖Et‖H‖∇E‖H‖V ‖Z

= C2‖V ‖Z

where C2 = min{‖Et‖H , ‖∇E‖H}
Hence F (V ) is continuous ∀ V ∈ Z
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Before trying to determine whether an unique solution of J ′(U) = 0
exists or not, we first state the famous Lax-Milgram theorem which wil be
used in the forthcoming stages.

Theorem 3.3.4 (Lax-Milgram). Let V be a hilbert space , a(., .) : V ×
V → R a continuous and coercive bilinear form, F (·) : V�R a linear and
continuous functional. Then there exists an unique solution to the problem
find u ∈ V :

a(u, v) = F (v) ∀v ∈ V

.

Theorem 3.3.5. If A(., .) as in (3.6) is coercive then A(U, V ) = F (V ) has
an unique solution ∀ V ∈ Z and hence J ′(U)[V ] = 0 ∀V ∈ Z has an
unique solution U0 which is an unique minimizer of the functional J(U) as
in (2.2).

Proof. Using Lax-Milgram’s Theorem in Z we get the first part of the the-
orem. The second part follows from the fact that A(U, V ) = F (V ) is equiv-
alent to the fact that J ′(U)[V ] = 0 ∀V ∈ Z.

Now we will show that the bilinear form A(U, V ) is Z−coercive under
some given conditions.

Case 1:
First we assume that on a part Ω1 of the boundary Ω, U vanishes, where

µ(Ω1) > 0.

Theorem 3.3.6. Under the above hypothesis, the bilinear form A(U, V ) as
in (3.6) is Z−coercive.

Proof. We have,

A(U,U) =

∫
Ω

(∇E·U)2 +K

∫
Ω

(∇u1)2 + (∇u2)2

≥ K
∫

Ω
(∇u1)2 + (∇u2)2

≥ K‖U‖Z . (By Poincare’s Inequality, see [KES])

So the Bilinear Form A(U, V ) is coercive and so A(U, V ) = F (V ) has an
unique solution ∀ V ∈ J(Ω) and hence J ′(U)=0 has an unique solution U0

which is an unique minimizer of the functional J(U) as in (2.2).

Case 2:
In this case we do not assume any condition on the flow velocity across

the boundary of Ω. But we assume something on the image E i.e we assume
that Ex and Ey are linearly independent and they are in H(Ω). We then
show the bilinear form is coercive.
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Theorem 3.3.7. Under the above hypothesis, the bilinear form A(U, V ) as
in (3.6) is Z−coercive.

Proof. The following derivations are based on the work of Horn and Schunck,
Nagel and can be found in the in [SC91].

We we use the Poincare-Wirtinger’s Inequality:-∫
Ω

(U − T )2dxdy ≤ D
∫

Ω
|∇U |2dxdy (3.8)

where

T =
1

|Ω|

∫
Ω
Udxdy, |Ω| =

∫
Ω
dxdy = 1 (3.9)

and D is a constant depending on Ω.
Suppose A(., .) is not coercive. Then @ any constant M > 0 s.t.

A(U,U) ≥M‖U‖2Z

So for any M > 0 ∃U ∈ Z s.t.

A(U,U) < M‖U‖2Z

We choose M = 1
n and get a sequence of Mn’s and correspondingly we

will get Un. Without loss of generality we can take ‖Un‖Z as 1. If not , we
can take Vn = Un

‖Un‖Z and replace Un with Vn.

So we get a sequence {Un}n∈N in Z with ‖Un‖Z = 1 and A(Un, Un)→ 0
as n→∞.

From (3.8) using the bilinear form A we have,∫
Ω

(un − T1n)2dxdy → 0 (3.10)

and ∫
Ω

(vn − T2n)2dxdy → 0 for n→∞. (3.11)

where

T1n =
1

|Ω|

∫
Ω
undxdy, T2n =

1

|Ω|

∫
Ω
vndxdy
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As, ∫
Ω

(Exu+ Eyv)2dxdy ≤ 2|E2
x|∞

∫
Ω
u2dxdy + 2|E2

y |∞
∫

Ω
v2dxdy

we have,∫
Ω

[Ex(un − T1n) + Ey(vn − T2n)]2 dxdy → 0 for n→∞. (3.12)

Now Et(∇E.V )
[∫

Ω(ExT1n + EyT2n)2dxdy
] 1
2

=
[∫

Ω(Exun + Eyvn + Ex(T1n − un) + Ey(T2n − vn))2dxdy
] 1
2

≤
[∫

Ω(Exun + Eyvn)2dxdy
] 1
2 +
[∫

Ω(Ex(T1n − un) + Ey(T2n − vn))2dxdy
] 1
2

≤ [A(Un, Un)]
1
2 +

[∫
Ω(Ex(T1n − un) + Ey(T2n − vn))2dxdy

] 1
2

→ 0 for n→∞ (Using 3.12)

We have

‖p+ q‖2H = ‖p‖2H + ‖q‖2H + 2(p, q)

≥ ‖p‖2H + ‖q‖2H − 2‖p‖H‖q‖H
|(p, q)|
‖p‖H‖q‖H

≥ ‖p‖2H + ‖q‖2H − (‖p‖2H + ‖q‖2H)
|(p, q)|
‖p‖H‖q‖H

= (‖p‖2H + ‖q‖2H){1− |(p, q)|
‖p‖H‖q‖H

}

We take p = ExT1n, q = EyT2n

So we get∫
Ω

(ExT1n+EyT2n)2dxdy ≥
[
‖Ex‖2H(T1n)2 + ‖Ey‖2H(T2n)2

]
{1− |(Ex, Ey)|
‖Ex‖H‖Ey‖H

}

As L.H.S → 0 as n→∞ as shown above and by linear independency of
Ex and Ey 1− |(p,q)|

‖p‖H‖q‖H > 0 and ‖Ex‖H and ‖Ey‖H are not identically 0.

we have
T1n → 0 and T2n → 0 as n→∞ (3.13)
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But this gives a contradiction as,

‖Un‖Z = 1

= ‖(Un − Tn) + Un‖Z

≤ ‖(Un − Tn)‖Z + ‖Tn‖Z

→ 0 as n→∞ By (3.10), (3.11), (3.13).

So A(., .) is coercive.

Hence J ′(U) = 0 has an unique solution U = U0 in J(Ω)

In the Dirichlet case, an unique minimizer of the functional J(U) exists
in H(Ω) and in the Neumann case, an unique minimizer of the functional
J(U) exists in J(Ω), provided Ex and Ey are linearly independent or in some
part of ∂Ω there is no velocity flux.

But we will now show that if the minimizer of the functional J , as in
(2.2), belongs to H, then it is also in Z.So in both the cases we have an
unique minimizer in Z.

3.4 Estimates For The Minimizer

Now we will derive some estimates for the unique minimizer obtained in the
above cases.

3.4.1 Dirichlet Case

Theorem 3.4.1. The unique minimizer of J(U), U = U0 obtained in The-
orem 3.3.1 for the Dirichlet case exists in Z.

Proof. We have seen that U0 satisfies (3.4). Then we have,

(LU0, U0) + (BU0, U0) = (F,U0) (Taking inner product of (3.4) with U0)

This gives,
‖∇U0‖2H + (BU0, U0) = (F,U0)

since

(LU0, U0) = −(∆U0, U0)
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Using integration by parts and dirichlet boundary conditions we get,

(LU0, U0) = (∇U0,∇U0)

= ‖∇U0‖2H

Adding ‖U0‖2H on both sides we get,

‖U0‖2H + ‖∇U0‖2H + (BU0, U0) = (F,U0) + ‖U0‖2H (3.14)

Now

sup
‖U0‖H 6=0

|(BU0, U0)|
‖U0‖2H

= ‖B‖

This implies,

− (BU0, U0) ≤ ‖B‖‖U0‖2H
(3.15)

Therefore equation (3.14) gives

‖U0‖2Z = (F,U0)− (BU0, U0) + ‖U0‖2H

≤ ‖F‖H‖U0‖H + (1 + ‖B‖)‖U0‖2H (Using (3.15))

<∞ as U0 ∈ H(Ω).

(3.16)

Hence U0 ∈ Z.

So we see that for the Dirichlet case also, the unique minimizer U0 ∈ Z.
Now we will prove an estimate for U0 in terms of the image derivatives.

Theorem 3.4.2. U0 obtained in Theorem 3.3.1 satisfies

‖U0‖Z ≤ C‖Et∇E‖H

where constant C depends on Ω and the smoothing parameter K.

Proof. By (3.14) we have (LU0, U0) + (BU0, U0) = (F,U0)

where F =

(
−ExEt

K
−EyEt

K

)
.

But (LU0, U0) = ‖∇U0‖2H

51



and

(BU0, U0) = (

(
E2

x
K

ExEy

K
ExEy

K

E2
y

K

)(
u0

v0

)
,

(
u0

v0

)
)

. =
1

K

(
E2
xu0 + ExEyv0

ExEyu0 + E2
yv0

)(
u0

v0

)

=
1

K
(u0Ex + v0Ey)

2 ≥ 0.

So we have, ‖∇U0‖2H ≤ (LU0, U0) ≤ (F,U0)

But ‖∇U0‖2H ≥ C(Ω)‖U0‖2Z(By Poincare’s Inequality where C(Ω) > 0 is
a constant depending on Ω)

So,

‖U0‖2Z ≤
1

C(Ω)
(F,U0)

≤ 1

C(Ω)
‖F‖H‖U0‖H(By Holder’s Inequality).

≤ 1

C(Ω)
‖F‖H‖U0‖Z

=
1

K.C(Ω)
‖Et∇E‖H‖U0‖Z

Suppose U0 6= 0 identically. Then we have the following estimate,

‖U0‖Z ≤
1

E(Ω,K)
‖Et∇E‖H (3.17)

where E(Ω,K) = K·C(Ω).

3.4.2 Neumann Case

Theorem 3.4.3. U0 obtained in Theorem 3.3.6 and Thoerem 3.3.7 satisfies

‖U0‖Z ≤ C‖Et∇E‖H

where constant C depends on Ω and the smoothing parameter K.

Proof. For the Neumann Case we have seen from Theorem 3.3.6 and Tho-
erem 3.3.7 that the Bilinear form A(U, V ) is coercive in J(Ω).
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So ∃ a constant D = D(Ω,K) s.t.

F (U0) = A(U0, U0) ≥ D(Ω,K)‖U0‖2Z (3.18)

where F (U0) = Et(∇E.U0)

Therefore,

‖U0‖2Z ≤
1

D(Ω,K)
F (U0)

≤ 1

D(Ω,K)
‖Et∇E‖H‖U0‖H

≤ 1

D(Ω,K)
‖Et∇E‖H‖U0‖Z

So the following estimate for the neumann case holds:-

‖U0‖Z ≤
1

D(Ω,K)
‖Et∇E‖H (3.19)

Comparing the expressions of (3.17) and (3.19), we find that both the
estimates are the same except for the constants E(Ω) and D(Ω,K). Even
the constants depend on the domain Ω and K. So the two estimates for the
Dirichlet and the Neumann case are compatible with each other.

Hence we see that U0 depends continuously on the given data i.e the
image derivatives.
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Chapter 4

Finite Element Method for
the optical flow problem

4.1 Introduction

We saw in the first chapter that using the finite difference iterative scheme for
finding the optical flow given a sequence of images, the relative L2 errors in
the optical flow velocity was a huge one. It meant that the iterative method
did not capture properly the motion of the images. One of the reasons
could be because of the fact that an finite difference approximations to the
laplacians are used which is based on the approximation of the Laplacians
of the velocity by an weighted average of the velocities at the neighbouring
eight points. So it does not capture the velocities in every direction. So
to improve on the way of approximations of the Laplacians we will try for
some other suitable method. One of them could be the finite element method
whose main concept is based on the approximation of the space rather than
approximation of the solution.

In this chapter we will discuss about finite element methods and how we
can use it to determine the optical flow velocity pattern of a given sequence
of images.

4.2 Approximation via the Galerkin method

The weak formulation of a pde set on a domain Ω can be written in the
following way
find u ∈ V :

a(u, v) = F (v) ∀v ∈ V (4.1)

where V is an appropriate Hilbert space, a(, ., ) is a continuous bilinear form
from V × V in R, F (·) is a continuous linear functional from V in R. Sup-
pose the bilinear form a(, ., ) is coercive. Then under the above hypotheses
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the Lax-Milgram theorem(Th.3.3.4) ensures existence and uniqueness of the
solution.
Let Vh be a family of Hilbert spaces that depends on a positive parameter
h, s.t.

Vh ⊆ V,dim Vh = Nh <∞ ∀h > 0

The approximate problem takes the form
find uh ∈ Vh :

a(uh, vh) = F (vh) ∀vh ∈ Vh (4.2)

Such type of approximate problem is called the Galerkin problem. Let us
denote with {φj , j = 1, 2, ..., Nh} a basis of Vh. Then it is sufficient that
(4.1) be verified for each function of the basis, as all the functions in Vh can
be written as a linear combination of the φj . Then we have,

a(uh, φi) = F (φi), i = 1, 2, ..., Nh (4.3)

As Uh ∈ Vh,

uh(x) =

Nh∑
j=1

ujφj(x), x ∈ Ω

where the uj , j = 1, ...., Nh are the unknown coefficients. The equations
(4.3) then become

Nh∑
j=1

uja(φj , φi) = F (φi), i = 1, 2, ..., Nh (4.4)

We denote A by the matrix(called stiffness matrix) with elements

Aij = a(φj , φi)

and by f the vector with components fi = F (φi). If we denote by u the
vector having as components the unknown coefficients ,(4.4) is equivalent to
the linear system

Au = f (4.5)

We will now show some properties of the matrix A under some given con-
ditions which will enable us to check for the existence of an unique solution
of (4.1).

Theorem 4.2.1. If the bilinear form a(, ., ) is coercive then the matrix A
associated to the discretization of (4.1) with the Galerkin method is positive
definite.

Proof. A matrix B ∈ Rn×n is said to be positive definite if

vTBv ≥ 0 v ∈ Rn and vTBv = 0 iff v = 0 (4.6)
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Let v = (vi) ∈ RNh . We have by the bilinearity and coercivity of the form
a(, ., ),

vTAv =

Nh∑
j=1

Nh∑
i=1

viAijvj

=

Nh∑
j=1

Nh∑
i=1

via(φj , φi)vj

=

Nh∑
j=1

Nh∑
i=1

a(vjφj , viφi)

= a(

Nh∑
j=1

vjφj ,

Nh∑
i=1

viφi)

= a(vh, vh)

≥ α‖vh‖2V ≥ 0.

where vh(x) =

Nh∑
j=1

vjφj(x) ∈ Vh. Moreover, if vTAv = 0 then by what we

have just obtained,
‖vh‖2V = 0

⇒ vh = 0

⇒ v = 0

Property 4.2.1. The matrix A is symmetric if and only if the bilinear form
a(, ., ) is symmetric.

Proof. Aij = a(φi, φj) = a(φj , φi) = Aji. Hence A is symmetric if and only
if the bilinear form a(, ., ) is symmetric.

4.3 Analysis of the Galerkin method

In this section we will briefly discuss about three of the fundamental prop-
erties of Galerkin method:

1. Existence and uniqueness of the discrete solution uh.

2. Stability of the discrete solution uh.

3. Convergence of uh to the exact solution u of problem (4.1) for h→ 0.
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4.3.1 Existence and uniqueness

The Lax-Milgram theorem (theorem 3.3.4) holds for any Hilbert space ,hence,
in particular for the space Vh. Furthermore the bilinear form a(, ., ) and the
functional F (.) are the same as in the variational problem (4.1). Thus the
hypotheses required by the Lax-Milgram theorem are fulfilled. The following
result can be then derived:

Corollary 4.3.1. If the bilinear form a(, ., ) is coercive then the solution of
the Galerkin problem (4.2) exists and is unique.

4.3.2 Stability

Corollary 4.3.1 helps us to prove the following stability result.

Corollary 4.3.2. Under the hypotheses of Corollary 4.3.1, the Galerkin
method is stable, uniformly with respect to h, as the following upper bound
holds for the solution

‖uh‖V ≤
1

α
‖F‖V ′

where α is the coercivity constant for the bilinear form a(, ., ), and ‖F‖V ′ is
the norm of the functional F defined as

‖F‖V ′ = sup
v∈V \{0}

|F (v)|
‖v‖V

Proof. If uh is almost everywhere equal to zero we are done, else we have
by the coercivity of the bilinear form a(, ., )

α‖uh‖2V ≤ a(uh, uh) = F (uh) ≤ |F (uh)|

Again as F is linear and continuous, we have

|F (uh)| ≤ ‖F‖V ′‖uh‖V

Hence the result.

The stability of the method gurantees that the norm‖uh‖V of the discrete
solution remains bounded for h tending to zero, uniformly with respect to
h.

4.3.3 Convergence

We now want to prove that the weak solution of the (4.2) converges to the
solution of the problem (4.1) when h tends to zero. Consequently,by taking
a sufficiently small h, it will be possible to approximate the exact solution
u as accurately as desired by the Galerkin solution uh. We first prove the
following consistency property
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Lemma 4.3.1 (Céa). The Galerkin method is strongly consistent, that is

a(u− uh, vh) = 0 ∀vh ∈ Vh (4.7)

Proof. Since Vh ⊆ V , the exact solution u satisfies the weak problem (4.1)
for each element v = vh ∈ Vh, hence we have

a(u, uh) = F (vh) ∀vh ∈ Vh. (4.8)

By subtracting side to side (4.2) from (4.8), we obtain

a(u, vh)− a(uh, vh) = 0 ∀vh ∈ Vh.

from which, thanks to the bilinearity of the form a(, ., ), (4.7) follows.

Next we prove a theorem regarding the error committed when the ap-
proximate solution uh is taken instead of the exact solution u.

Theorem 4.3.1. If u and uh denote the solutions of (4.1) and (4.2) respec-
tively, then we have

‖u− uh‖V ≤
M

α
inf

wh∈Vh
‖u− vh‖V (4.9)

where M and α are the constants of continuity and coercivity respectively
for the bilinear form a(, ., ).

Proof. If vh is an arbitrary element of Vh we obtain

a(u− uh, u− uh) = a(u− uh, u− vh) + a(u− uh, vh − uh).

The last term is null thanks to (4.7), as vh − uh ∈ Vh. Moreover

|a(u− uh, u− vh)| ≤M‖u− uh‖V ‖u− vh‖V

by exploiting the continuity of the bilinear form. On the other hand, by the
coercivity of a(, ., ) it follows

a(u− uh, u− uh) ≥ α‖u− uh‖2V

hence we have

‖u− uh‖V ≤
M

α
‖u− vh‖V ∀vh ∈ Vh

Such inequaltiy holds for all functions vh ∈ Vh and therefore we find

‖u− uh‖V ≤
M

α
inf

vh∈Vh
‖u− vh‖V (4.10)
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It is then evident that in order for the method to converge, it will be
sufficient to require that, for h tending to zero, the space Vh tends to �fill�the
entire space V . Precisely it must turn out that

lim
h→0

inf
vh∈Vh

‖v − vh‖V = 0 ∀v ∈ V (4.11)

The above property is also known as the density property. In that case,
the Galerkin method is convergent and it can be written that

lim
h→0
‖u− uh‖V = 0

The space Vh must therefore be carefully chosen in order to gurantee the
density property (4.11). Once this requirement is satisfied, convergence will
be verified in any case, independently of how u is made; conversely it will
be seen later that the speed with which the discrete solution converges to
the exact solution will depend, in general, on both the choice of Vh and the
regularity of u. In the following section we will try to achieve specifically
the above objective.

4.4 The finite element method

Let Ω be a bounded domain in Rn. The goal of this section is to create
approximations of the space H1(Ω) that depend on a parameter h.

Definition 4.4.1. A finite element is a triple (K,
∑
, P ) such that

1. K ⊆ Ω with a Lipschitz continuous boundary ∂K and interior of K is
non-empty.

2.
∑

is a finite set of linear forms over C∞(K). The set
∑

is said to
be the set of degrees of freedom of the finite element.

3. P is a finite dimensional space of real-valued functions over K such
that

∑
is P−unisolvent i.e if

∑
= {φi}Ni=1 and αi, 1 ≤ i ≤ N are any

scalars, then there exists an unique function p ∈ P such that

φi(p) = αi 1 ≤ i ≤ N (4.12)

(4.12) of Definition (4.4.1) is equivalent to the conditions that dim P =
N = cardinality of

∑
and that there exists a set of functions {pj}Nj=1 with

φi(pj) = δij(1 ≤ i, j ≤ N) which forms a basis of P over R. Given any p ∈ P
we may write

p =
N∑
i=1

φi(p)pi (4.13)
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4.4.1 Examples of finite elements

We will now give some examples of finite elements which will be used in the
optical flow problem.But before that we define the following

Definition 4.4.2. An n-simplex is the convex hull in Rn of (n + 1) points
{aj}n+1

j=1 such that if aj = {akj}nk=1 and A is the matrix

A =


a11 a12 · · · a1,n+1

a21 a22 · · · a2,n+1
...

...
. . .

...
an1 an2 · · · an,n+1

1 1 1 1


then det(A) 6= 0

Definition 4.4.3. Let k ≥ 0 be an integer. Then, PK is the space of all
polynomials of degree ≤ k in x1, x2, ...., xn

i.e.

PK = {p(x1, x2, ..., xn) =
∑

i1,i2,..,in≥0,i1+i2+..+in≤k
ai1i2..inx

i1
i1
xi2i2 ..x

in
in

with ai1i2..in ∈ R}

.

Example 4.4.1 (The n-simplex of Type 1). Let K be an n-simplex. Let
PK = P1. We define a set

∑
= {p(ai); 1 ≤ i ≤ n+ 1} of degrees of freedom

for p ∈ PK , where {ai}n+1
i=1 are the vertices of K. The set

∑
determines

every polynomial p ∈ PK uniquely. Hence (K,
∑
, PK) is a finite element of

Type 1.

Example 4.4.2 (The n-simplex of Type 2). Let K be an n-simplex with
vertices {ai}n+1

i=1 . Let aij(i < j) be the mid-points of the line joining ai
and aj i.e.aij = 1

2(ai + aj). Let PK = P2. We define for p ∈ P2, the set∑
= {p(ai), 1 ≤ i ≤ n + 1; p(aij), 1 ≤ i < j ≤ n + 1} (See Fig 4.1). Then∑
determines p ∈ P2 completely. Hence (K,

∑
, PK) is a finite element of

Type 2
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Figure 4.1: n-simplex of Type 2

Similarly we could use n-simplices of Type r to get other forms of finite
elements using Pr. Again we consider another space of polynomials.

Definition 4.4.4. Let k ≥ 1 be an integer. Then

Qk = {p : p(x) =
∑

0≤ij≤k,1≤j≤n
ai1...inx

i1
1 ...x

in
n }

We have the inclusions Pk ⊂ Qk ⊂ Pnk
Example 4.4.3 (The Rectangle of Type 1). Let K be an unit square in R2

i.e. K = [0, 1]2. Let PK = Q1. We define a set
∑

= {p(ai); 1 ≤ i ≤ 4} of
degrees of freedom for p ∈ PK , where {ai}4i=1 are the vertices of K (See Fig
4.2). Then

∑
determines p ∈ Q1 completely. Hence (K,

∑
, PK) is a finite

element.

Figure 4.2: Rectangle of Type 1
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Example 4.4.4 (The Rectangle of Type 2). Let K be an unit square in R2

i.e. K = [0, 1]2. Let PK = Q2. We define a set
∑

= {p(ai); 1 ≤ i ≤ 9}
of degrees of freedom for p ∈ PK , where {ai}9i=1 are union of the vertices,
mid-points of the sides and the centre of the square K (See Fig 4.3). Then∑

determines p ∈ Q2 completely. Hence (K,
∑
, PK) is a finite element.

Figure 4.3: Rectangle of Type 2

Similarly we can construct finite elements of type k using QK .

We saw in the above examples that the set of degrees of freedom for a
finite element K(which could be a triangle in 2-d or cube in 3-d) has the
following types:

Type 1: φ0
i given by p 7→ p(a0

i ). The points {a0
i } were the vertices, the mid-

points of sides,etc.....

Type 2: φ1
i,k given by p 7→ Dp(a1

i )(ξ
1
i,k) where {a1

i } are the vertices of the finite

element K and Dp(a1
i ) is the total derivative of p at the point (a1

i ).

Type 3: φ2
i,kl given p 7→ D2p(a2

i )(ξ
2
i,k, ξ

2
i,1) where {a2

i } are the vertices of the

finite element K and D2p(a2
i ) is the second derivative of p at the point

(a1
i ).

In all the above cases {asi} for s = 0, 1, 2 are points of K and are called the
nodes of the finite element.

Definition 4.4.5. A finite element is called a Lagrange finite element if its
degrees of freedom are only of Type 1. Otherwise it is called a Hermite finite
element.

As said before that our aim was to create approximations of the space
H1(Ω), Vh which depend on a prameter h. We will use the finite elements in
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the above given examples to create the approximate spaces Vh. But before
that we need simple inclusions such as Vh ⊂ H1(Ω) or H1

0 (Ω). We will
establish a simple criterion to realise this.

Theorem 4.4.1. Let ζh be a finite triangulation of Ω such that Ω =
⋃
K∈ζh

K

where the sets K are the finite elements. If for every K ∈ ζh, PK ⊂ H1(K)
and Vh ⊂ C0(Ω), then Vh ⊂ H1(Ω). If in addition v = 0 on ∂Ω for all
v ∈ Vh, then Vh ⊂ H1

0 (Ω).

Proof. Let v ∈ Vh. Since v|K ∈ L2(K) for every K ∈ ζh it follows that
v ∈ L2(Ω). Hence to complete the proof it only remians to show that for
1 ≤ i ≤ n, there exist vi ∈ L2(Ω) such that for each φ ∈ D(Ω) we have,∫

Ω
φvidx = −

∫
Ω

∂φ

∂xi
vdx (4.14)

Then it will follow that ∂v
∂xi

= vi and hence v ∈ H1(Ω).

However, v|K ∈ PK ⊂ H1(K) implies that ∂v|K
∂xi

∈ L2(K), 1 ≤ i ≤ n.
Let φ ∈ D(Ω). Since the boundary ∂K of any K of the triangulation is
Lipschitz continuous, we apply integration by parts to get∫

K

∂v|K
∂xi

φdx = −
∫
K

(v|K)
∂φ

∂xi
dx+

∫
∂K

(v|K)φνi,KdνK

where dνK is the measure on ∂K and ν = (ν1,K , ...., νn,K) is the outer normal
on ∂K Summing over all the finite elements K, we get∫

Ω
φvidx =

∑
K∈ζh

∫
K
φ
∂v|K
∂xi

dx

= −
∫

Ω

∂φ

∂xi
vdx+

∑
K∈ζh

∫
∂K

(v|K)φνi,KdνK

where vi is the function whose restriction to each K is ∂v|K
∂xi

.
The summation on the right-hand side of the above equation is zero for

the following reasons:
On the boundary ∂Ω, since φ ∈ D(Ω), the integral corresponding to

∂K ∩ ∂Ω is zero. So the problem, if any, is only on the other portion of the
boundary of each K. However, these always occur as common boundaries of
adjacent finite elements. The value of v|K on the common boundary of two
adjacent finite elements is the same (Vh ⊂ C0(Ω)). But the outer normals
are equal and opposite from orientation considerations.(See Fig 4.4).
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Figure 4.4: The orientations of the normals in adjacent finite elements

Hence the contributions from each K along the common boundaries can-
cel one another. Thus the summation yields only zero. Hence vi satisfies
(4.14) for 1 ≤ i ≤ n, and clearly vi ∈ L2(Ω). The last part of the theroem
follows from the characterisation of H1

0 (Ω) spaces.

4.4.2 Finite element spaces

Now that we have obtained the above inclusions we now proceed to give ex-
amples of some finite element spaces which approximate the space H1(Ω) or
H1

0 (Ω). Before that we consider some assumptions on the triangulation ζh
of the domain Ω. The h parameter is related to the spacing of the triangula-
tion. We set hK = diam(K) for each K ∈ ζh, where diam(K) = max

x,y∈K
|x−y|

is the diameter of the element K. Now we define h = max
K∈ζh

hK . Moreover,

we will impose the triangulation satisfy the following regularity condition.
Let ρK be the diameter of the circle inscribed inscribed in the triangle K
(also called the sphericity of K); a family of triangulations {ζh, h > 0} is
said to be regular if, for a suitable δ > 0, the condition

hK
ρK
≤ δ ∀K ∈ ζh (4.15)

is verified. This condition instantly excludes very deformed triangles. Hence-
forth we will be using such regular grids.
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Now we consider the following family of spaces

Xr
h = {vh ∈ C0(Ω) : vh|K ∈ Pr ∀K ∈ ζh}, r = 1, 2, ... (4.16)

having denoted by Pr the space of polynomials with degree lower than or
equal to r in all the variables. The spaces Xr

h are all subspaces of H1(Ω)
as they are constituted by differentiable functions except for at most a fi-
nite number of points(the vertices xi of the triangulation ζh). They rep-
resent possible choices for the space Vh, provided that the boundary con-
ditions are properly incorporated. The fact that the functions of Xr

h are
locally(elementwise) polynomials will make the stiffness matrix A in (4.5)
easy to compute.

To make the stiffness matrix a sparse matrix, we usually choose a basis
{φi} for the Xr

h space such that the support of each {φi} have non-empty
intersection only with that of a negligible number of other functions in the
basis. It is also convinient that the basis be Lagrangian: in that case, the
coefficients of the expansion of a generic function vh ∈ Xr

h on the basis itself
will be the values taken by vh in carefully chosen points, which we call nodes
and which might form a superset of the vertices of ζh.

We can also define another kind of finite element spaces for rectangular
finite elements of type r as described in Section 4.4

Xr
h = {vh ∈ C0(Ω) : vh|K ∈ Qr ∀K ∈ ζh}, r = 1, 2, ... (4.17)

having denoted by Qr the space of polynomials with degree lower than or
equal to r in each variable. The spaces Xr

h are also subspaces of H1(Ω) as
they are constituted by differentiable functions except for at most a finite
number of points(the vertices of the rectangulation ζh). We again choose a
Lagrangian basis for the space so that our stiffness matrix is a sparse matrix.

4.5 Interpolation Theory

In the previous section we have outlined the internal approximation method
for H1(Ω). We are naturally interested in the convegrence of the solution
uh ∈ Vh to the global solution u ∈ H1(Ω). As a key step in this analysis we
obtained the error estimate (4.10)

‖u− uh‖H1 ≤
M

α
inf

vh∈Vh
‖u− vh‖H1

Let v ∈ C0(Ω). We now define interpolant of v in the space of X1
h determined

by the triangulation ζh as the function Π1
hv such that Π1

hv(Ni) = v(Ni) for
each node Ni of ζh for i = 1, 2, ..., Nh. If {φi} is the Lagrangian basis of the
space X1

h, then

Π1
hv(x) =

Nh∑
i=1

v(Ni)φi(x)
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The operator Π1
h : C0(Ω) → X1

h, associating a continuous function v to its
interpolant Π1

hv is called interpolation operator.
Analogously we can define an operator Πr

h : C0(Ω)→ Xr
h, for each inte-

ger r ≥ 1. Having denoted by Πr
K , the local interpolation operator associ-

ated to a continuous function v the polynomial Πr
Kv ∈ Pr(K), interpolating

v in the degrees of freedom of the element K ∈ ζh, we define

Πr
hv ∈ Xr

h : Πr
h|K = Πr

K(v|K) ∀K ∈ ζh

From (4.10) we get

‖u− uh‖H1(Ω) ≤
M

α
inf

vh∈Vh
‖u− vh‖H1(Ω)

=
M

α

∑
K∈ζh

‖u−Πr
h‖2H1(K)

 1
2

=
M

α

∑
K∈ζh

‖u−Πr
K‖2H1(K)

 1
2

(4.18)

Thus the problem of estimating ‖u−uh‖H1(Ω) is reduced to the problem
of estimating ‖u−Πr

K‖H1(K). We will now state the the interpolation error
estimates and an estimate for the error ‖u − uh‖H1(Ω). The proofs can be
found in AQ. To prove these estimates, regularity of the triangulation is
used as well as affine and invertible transformation FK : K̂ → K betweeen
the reference triangle K̂ and the generic triangle K (see Fig 4.5) is used.
Such a map is defined by FK(x̂) = BK x̂ + bK , BK ∈ R2×2, bK ∈ R2, and it
satisfies the relation FK(K̂) = K.

Figure 4.5: The map FK between the reference triangle K̂ and the generic
triangle K

Theorem 4.5.1 (Global estimate for the interpolation error). Let {τh}h>0

be a family of regular grids
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of the domain Ω and let m = 0,1 and r ≥ 0. Then there exists a constant
C = C(r,m,K̂)> 0 3

|v −Πr
hv|Hm(Ω) ≤ C

∑
K∈τh

h
2(r+1−m)
K |v|2Hr+1(K)

 1
2

∀v ∈ Hr+1(Ω)

In particular we obtain

|v −Πr
hv|Hm(Ω) ≤ Chr+1−m|v|Hr+1(Ω) ∀v ∈ Hr+1(Ω)

Theorem 4.5.2 (Error estimate for the finite element solution). Let u ∈ V
be the exact solution of the variational problem (1) and uh be its approximate
solution using the finite element method of degree r. If u ∈ Hr+1(Ω), then
the following a priori error estimate hold:-

‖u− uh‖H1(Ω) ≤
M

α
C
(
ΣK∈τhh

2r
K |u|2Hr+1(K)

) 1
2

‖u− uh‖H1(Ω) ≤
M

α
Chr|u|Hr+1(Ω)

C is a constant independent of h and u.

4.6 Finite element method for the Optical flow
problem (2.2)

Now that we have the required prerequisities, we will solve the optical flow
problem (2.2) using the finite element method. We will first formulate the
problem in the finite element setup.

We are to minimize the functional J as given in (2.2). We showed in
Theorem 3.2.2 that minimizing the functional J is equivalent to finding a
solution of J ′(U) = 0. We also showed in Section 3.3.2 that we can write
J ′(U)[V ] = 0 ∀V ∈ Z as A(U, V ) = F (V ) where A(U, V ) is a symmetric
bilinear form on ZÖZ associated to the functional J given by (3.6) and
F (V ) is a linear form on Z given by (3.7). The approximate problem can
be written as

find Uh ∈ Zh :
A(Uh, Vh) = F (Vh) ∀Vh ∈ Zh

where Zh is a suitable approximation of the space Z depending on a param-
eter h. So in the finite element setup, the optical flow problem reduces to
find Uh ∈ Zh:∫

Ω
(∇E·Uh)(∇E·Vh) +K

∫
Ω

(∇Uh·∇Vh) = −
∫

Ω
Et(∇E·Vh) ∀Vh ∈ Zh
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We take the approximation of the space Z as the space Zh = (X1
h)2. So

we are considering Type 1 rectangular finite elements. The characteristic La-
grangian basis functions are characterized by the following property Φi ∈ Zh
such that Φi(xj) = δij , i, j = 0, 1, ..., Nh where Nh are the number of nodes
and δij being the Kronecker delta. The function Φi is therefore piecewise
linear in each coordinate, as we have rectangular finite elements, and equal
to one at each xi and zero at the remaining nodes of the triangulation.

4.6.1 Data

Our domain Ω is the unit square in R2 i.e. [0, 1]Ö[0, 1]. We have taken our
image at time t0 to be E0 defined as:-

E0(x, y) = E(x, y, 0) = e[−50∗{(x−0.5)2+(y−0.5)2}]

and for testing the accuracy of the method we move the image with a pre-
defined constant velocity of (u, v) = (1, 1).

So at time t, the image will be given by,

E(x, y, t) = E0(x− ut, y − vt) = E(x− ut, y − vt, 0)

using the characteristic method. We use the Neumann boundary conditions
which are natural boundary conditions.

4.6.2 Programming procedure

We use deal.II libraries in C++ programming language to solve the problem.
We refine the domain Ω uniformly three times i.e in the first step we divide
Ω into four equal cells. In the second step we divide each of the four cells
into equal four cells and so on uptil three times. So the total number of
active cells will be 64. Then the degrees of freedom in the refined grid are
calculated and we now form the stiffness matrix A and the right hand side
f as in (4.5) and hence the linear equation

AU = f, U ∈ T. (4.19)

It will be a sparse matrix. It is invertible under the conditions for Neumann
boundary conditions in Chapter 3 as the associated bilinear form is coercive
(Theorem 4.2.1). Then the linear system in (4.19) is solved using the con-
jugate gradient method (See Appendix C ). A preconditioner is also used
to improve on the condition number of the matrix A so that after inversion
of the matrix the results are proper.

4.6.3 Results

With Neumann boundary conditions, we obtained the following velocity
vector diagram for K = 0.9
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Figure 4.6: Image along with the velocity vectors for K = 0.9.

We also obtained the following velocity vector diagram for K = 1.1

Figure 4.7: Image along with the velocity vectors for K = 1.5.

From Fig 4.6 and Fig 4.7 we can see that the velocity vectors have the
same direction and almost the same magnitude as indicated by the L2 error
from Table 4.1. We changed the smoothing parameter K and calculated the
L2 error in the velocity and the error in the advection term

∫
ΩEt +∇E.U .

The results are shown below:

4.6.4 Conclusion

The order of the advection error is 10−28 and the order of the L2 error
is 10−13 which suggests that the optical flow velocities obtained using the
finite element method satisfy the advection equation and are very close to
the actual velocity since we already know the actual velocity in this case.
We have also plotted a graph of L2 error versus K to see for which values
of K is the L2 error very small. The graph is displayed below.
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K Relative L2 Error Advection Error

0.1 5.5502 e-13 9.57645 e-26
0.2 1.35063 e-13 6.84743 e-27
0.3 2.2402 e-13 3.27 e-26
0.4 6.30311e-13 2.49359 e-27
0.5 8.06069 e-13 4.05669 e-27
0.6 9.68666 e-13 5.98357 e-27
0.7 1.11661 e-13 7.80902 e-27
0.8 1.24088 e-13 9.44175 e-27
0.9 1.59248 e-13 1.62616 e-27
1 2.21603 e-13 3.56386 e-28

1.1 2.22272 e-13 3.58421 e-28
1.2 2.65804 e-13 5.19862 e-28
1.3 2.48961 e-13 2.70607 e-28
1.4 2.71351 e-13 3.36132 e-28
1.5 2.99787 e-13 6.08894 e-28
1.6 3.31377 e-13 6.62004 e-28
1.7 3.3914 e-13 4.17334 e-28
1.8 3.47395 e-13 4.95675 e-28
1.9 3.67301e-13 6.14862 e-28
2 4.06641 e-13 8.57827 e-28

Table 4.1: Variation of relative L2 error and Advection error with the
smoothing parameter K

Figure 4.8: Graph of L2 error vs K.

We find that the L2 error is oscillating for different values of K from 0
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to 2 but when K > 1 it gives less error ( In fact near K = 1 it has the least
error and near K = 0 it gives the greatest error). But the error is of order
10−13 which is very small and so optimal K cannot be determined. This
suggests us to take higher values of K. We again plot a graph of L2 error
versus K when K ranges from 2 to 90.

Figure 4.9: Graph of L2 error vs K.

Again the order of the error is 10−13 which suggests that we can take
any non-zero K and solve the problem. There does not exist any optimal
K. But we have to be carefull not to choose K very close to 0 otherwise the
matrix A may not be invertible.

So we see that the finite element method is better than the finite differ-
ence method as the error decreases by order of 10−13. So we now proceed
to the next chapter to solve the cloud motion problem emulating the optical
flow techniques that has been tested uptil now. We would like to capture
the velocity of the fluid whose motion determines the motion of the clouds.
We will assume that the fluid flow is potential and incompressible. We will
solve it numerically using the finite element method as we found out that the
method is more accurate than the finite difference method. We assume that
the velocity potential satisfies the Laplace’s equation and we will try and
minimize the advection error with respect to suitable values of the normal
flux of the velocity at the boundary.
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Chapter 5

Finite Element method for
the Potential flow problem

5.1 Introduction

With all the study of optical flow methods done in the previous chapters
we now move on to the field of cloud motion. We are interested in the
advection of clouds in some fluid due to the fluid flow. We will try to
recover the underlying fluid flow. We assume that the fluid flow is potential
and incompressible.

5.2 Constraints

Let E be a brightness pattern. We will again assume that brightness of a
particular point in the pattern is constant,so

dE

dt
= 0

This implies E satisfies

Exu+ Eyv + Et = 0 (5.1)

Let U = (u, v) be the optical flow velocity. Then by our assumption on the
flow

U = ∇Φ

∆Φ = 0
(5.2)

Now to solve for Φ we have to give a boundary condition on it and so
the natural choice would be to specify the normal rate of change of flux on
the boundary. The condition can be written as

∇Φ·n = g (5.3)
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where g is some arbitrary function and n is the unit normal on the boundary
of Ω. If U belongs to Z = (H1(Ω))2 then g belongs to H

1
2 (∂Ω). Our aim is

to determine a suitable g so that U satisfies (5.1), (5.2) and (5.3). Now to
solve for Φ from (5.2) and (5.3) we have another constraint to be satisfied
i.e ∫

∂Ω
g = 0 (5.4)

We will now modify the HS functional (2.2) an try to solve the problem
incorporating the above constraints.

5.3 Problem Statement

Let E : ΩÖR+ −→ R, be an image sequence, where Ω ⊆ R2 is a bounded
domain of the spatial coordinates and R+ is the domain of the time coordi-
nate. We estimate the optical flow, the field U ∈ H1(Ω) of optical velocities
over Ω, by minimising the functional,

J(U) =
1

2

∫
Ω

(Et +∇E·U)2 +
K

2

∫
∂Ω
g2 (5.5)

over g ∈ H
1
2 (∂Ω), subject to the above given constraints, where K is a

positive constant.
There are two terms in the functional. The first term comes as a result

of the fact that brightness of a particular point in the image pattern is
constant. The second term is added to have a control over the normal rate
of change of optical flow flux on the boundary.

5.4 Minimization equations

We consider the auxillary functional

J̃(U,ψ, λ) =
1

2

∫
Ω

(Et +∇E·U)2dxdy +
K

2

∫
∂Ω
g2dν +

∫
∂Ω
gψdν−∫

Ω
∇Φ·∇ψdxdy + λ

∫
∂Ω
g

=
1

2

∫
Ω

(Et +∇E·∇Φ)2dxdy +
K

2

∫
∂Ω
g2dν +

∫
∂Ω
gψdν−∫

Ω
∇Φ·∇ψdxdy + λ

∫
∂Ω
g,

(5.6)

where ψ ∈ H1(Ω) is the Lagrange multiplier for constraint on Φ and λ ∈ R
is the Lagrange multiplier for the constraint

∫
∂Ω g = 0.
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5.4.1 Equation for Φ given from ∂J̃
∂ψ

= 0

We consider

lim
ε→0

J̃(ψ + εψ̃)− J̃(ψ)

ε
= 0, ψ̃ ∈ H1(Ω)

This gives ∫
∂Ω
gψ̃dν −

∫
Ω
∇Φ·∇ψ̃dxdy, ψ̃ ∈ H1(Ω) (5.7)

5.4.2 Equation for ψ given from ∂J̃
∂Φ

= 0

We consider

lim
ε→0

J̃(Φ + εΦ̃)− J̃(Φ)

ε
= 0, ∀Φ̃ ∈ H1(Ω)

This gives

−
∫

Ω
∇ψ·∇Φ̃ + lim

ε→0

1
2

∫
Ω(Et +∇E·∇(Φ + εΦ̃))2 − (Et +∇E·∇Φ)2

ε
= 0

which reduces to

−
∫

Ω
∇ψ·∇Φ̃ +

∫
Ω

(Et +∇E·∇Φ)(∇E·∇Φ̃) = 0, ∀Φ̃ ∈ H1(Ω) (5.8)

5.4.3 Equation for g given from ∂J̃
∂λ

= 0

We consider ∂J̃
∂λ = 0 to get ∫

∂Ω
g = 0 (5.9)

5.4.4 Minimization equation obtained from ∂J̃
∂g

= 0

We consider

lim
ε→0

J̃(g + εg̃)− J̃(g)

ε
= 0, g̃ ∈ H

1
2 (∂Ω)

Then we get ∫
∂Ω

(Kg + ψ + λ)g̃ = 0, ∀g̃ ∈ H
1
2 (∂Ω) (5.10)

(5.10) gives us
Kg + ψ + λ = 0 (5.11)

on ∂Ω. This gives ∫
∂Ω

(Kg + ψ + λ)dν = 0
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Using (5.9) we get

λ

∫
∂Ω
dν = −

∫
∂Ω
ψdν

This gives

λ = −
∫
∂Ω ψdν∫
∂Ω dν

Therefore (5.11) implies

g =
1

K

(
−ψ +

∫
∂Ω ψdν∫
∂Ω dν

)
(5.12)

on ∂Ω.

5.5 Solving the problem

Now that we have got the equations (5.7), (5.8), (5.9), (5.10), (5.12), we will
solve them using finite element method to recover the optical flow velocity for
a given image pattern. We use Freefem++ software to achieve this objective.
But first we will write down the original space Z where we are trying to find
the solution, the approximate space Zh depending on parameter h and the
weak formulations for Φ, ψ in the space Zh.

Our domain Ω is the unit square in R2. We take Z = (H1(Ω))2 and
the approximation of the space Z as the space Zh = (X1

h)2 where X1
h is the

space defined in (4.16).
The weak formulation for ψ is

−
∫

Ω
∇ψ·∇ψh +

∫
Ω

(Et +∇E·∇Φ)(∇E·∇ψh) = 0, ∀ψh ∈ X1
h(Ω) (5.13)

The weak formulation for Φ is∫
∂Ω
gΦh −

∫
Ω
∇Φ·∇Φh, ∀Φh ∈ X1

h(Ω) (5.14)

5.6 Data for constant flow

We have taken our image at time t0 to be E0 defined as:-

E0(x, y) = E(x, y, 0) = e[−50∗{(x−0.5)2+(y−0.5)2}]

and for testing the accuracy of the method we move the image with a pre-
defined constant velocity of u = 1.0 and v = 1.0.

So at time t, the image will be given by,

E(x, y, t) = E0(x− ut, y − vt) = E(x− ut, y − vt, 0)

using the characteristic method.
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5.7 Programming procedure

As we have said earlier that we will solve the above problem using Freefem++
software. The steps for solving the problem are enumerated below

1. We divide Ω into triangular finite elements. Freefem++ helps us to
do so(In the previous chapter, the deal.II software was dividing Ω into
rectangular finite elements).

2. We then give an arbitrary starting value of g and solve for Φ using its
weak formulation. We note while solving for Φ we are using Neumann
boundary conditions and so the solution is unique upto a constant.
To remove ambiguity arising from the constants we modify the weak
formulation for Φ as∫

∂Ω
gΦh −

∫
Ω
∇Φ·∇Φh − ε

∫
Ω

ΦΦh, ∀Φh ∈ X1
h(Ω)

where ε = 10−10. So unless Φ is of order 1
ε we satisfy (5.9) and also

the solution obtained is unique and it is almost equal to the solution
obtained from (5.14).

3. After we get Φ, we substitute it in (5.13) and solve for ψ.

4. We then modify g using (5.12).

5. Now we check the L2 error of the difference of the modified g and
the previous value of g. If the difference is less than a given value of
tolerance, then we have obtained the solution Φ and hence the flow
velocity U = (∂x(Φ), ∂y(Φ)) else we use the modified value of g to
again solve for Φ, ψ and then repeat the procedure.

5.8 Results

The results obtained by taking our image E as above are given below.
Ω is divided into triangles as seen in Fig 5.1
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Figure 5.1: Ω divided into triangles

The image E is plotted as given in Fig 5.2

Figure 5.2: Image E
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The velocity vectors for different values for K are shown below:

Figure 5.3: K = 1
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Figure 5.4: K = 1.1

Figure 5.5: K = 1.5
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Figure 5.6: K = 1.75

Figure 5.7: K = 2
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From the above figures, we note that for K = 1 the magnitude of the
velocity vectors are too high which suggests that K = 1 is not a good choice.
But For K = 1.1, 1.5, 1.75, 2 we see that the average magnitude is near to
0.5 and it decreases as we increase K. We now draw a table for comparing
the relative L2 errors and the advection errors(

∫
Ω(Et+∇E.U)) for different

values of K.

K Time taken/ Relative L2 error Advection error Method Convergence

Number of steps Status

0.8 315 steps - - No
1 315 steps - - No

1.01 315 steps - - No
1.06 315 steps - - No
1.08 315 steps - - No
1.09 315 steps - - No
1.1 850.45 sec 0.530761 8.53735 e-5 Yes
1.2 47.375 sec 0.550122 8.16886 e-5 Yes
1.5 13.24 sec 0.599979 7.23131 e-5 Yes
1.75 9.23 sec 0.633987 6.599943 e-5 Yes

2 7.31 sec 0.662754 6.06881 e-5 Yes
3 4.33 sec 0.743681 4.59114 e-5 Yes

Table 5.1: Variation of relative L2 error and advection error with the
smoothing parameter K

Our tolerance level is set at 10−10. We can see from above table that if
K ≤ 1 then the method does not converge at all. But even if we increase
K then the method converges but as we increase K the relative L2 error
increases, not rapidly. But the advection error decreases as K ≥ 1.1 even
though the order of the error is 10−5. Also time taken to compile is pro-
prtional to K. So to have a balance between the control of L2 error and the
advection error we would want to choose K such that the L2 error is the
minimum as the order of the L2 error is much greater than the advection
error.The results suggest that the optical flow velocity could be sensitive to
K. Smaller values of K cannot be taken. Too higher values of K might
over-regularize the flow velocity. So there exists an optimal value of K for
which the reltive L2 error is the minimum. We plot a graph to see the same.
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Figure 5.8: Graph of Relative L2 error vs K showing existence of an optimal
K

From the above results we have an intuitive feeling that the optical flow
velocity might depend on K. So we try for another example where the above
given image E is subject to a point vortex.

5.9 Flow due to point vortex

We consider the same domain and the same image E. We now introduce
a point vortex of strength κ = 100.0, whose singularity lies at the point
(−1,−1) i.e. outside the domain. The velocity components are given as

u = − κ(y + 1)

2π [(x+ 1)2 + (y + 1)2]

v =
κ(x+ 1)

2π [(x+ 1)2 + (y + 1)2]

(5.15)

To test the method, we move the image E with the velocity U = (u, v)
according to the advection equation Et+∇E.U = 0 and then we will recover
the velocity U . The results obtained are shown below:

5.10 Results

The mesh is the same as for the previous case. The image E is also the
same. The velocity vectors are plotted for different values of K.
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Figure 5.9: K = 0.8

Figure 5.10: K = 1
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Figure 5.11: K = 1.04

Figure 5.12: K = 1.1
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Figure 5.13: K = 1.2

Figure 5.14: K = 1.4
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Figure 5.15: K = 1.8

Figure 5.16: K = 2
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Figure 5.17: K = 2.5

Figure 5.18: K = 3
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5.11 Conclusions

From the above figures, we see a similar trend as we had got for the previous
example. We note that for K = 1 the magnitude of the velocity vectors
are too high which suggests that K = 1 is not a good choice. But For
K = 1.1, 1.2, 1.4, 1.8, 2, 2.5, 3 we see that the average magnitude is near to 1
and it decreases as we increase K. We now draw a table for comparing the
relative L2 errors for different values of K.

K Time taken/ Relative L2 error Advection Error Method Convergence

Number of steps Status

0.8 315 steps - - No
1 315 steps - - No

1.04 315 steps - - No
1.08 315 steps - - No
1.1 869.78 sec 0.562607 Yes
1.2 42.79 sec 0.580036 4.81059 e-4 Yes
1.4 16.3 sec 0.611268 4.36944 e-4 Yes
1.8 8.3 sec 0.662055 3.70100 e-4 Yes
2 6.87 sec 0.682904 3.44042 e-4 Yes

2.5 5.06 sec 0.725437 2.92845 e-4 Yes
3 4.28 sec 0.75802 2.55113 e-4 Yes

Table 5.2: Variation of relative L2 error with the smoothing parameter K
for vortex flow.

Our tolerance level in this case is set at 10−7. We can see from above
table that if K ≤ 1 then the method does not converge at all. But even if we
increase K then the method converges but as we increase K the relative L2

error increases, not rapidly. Again the time taken to compile is proprtional to
K. So we would want to choose K such that the L2 error is the minimum.
As in both the cases of constant flow and point vortex flow, we saw the
same behaviour of the flow velocity with K we can now predict that for this
method we have an universal optimal K which would minimize the L2 error
in the flow velocity. We again plot a graph to see which could be the optimal
K.
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Figure 5.19: Graph of Relative L2 error vs K showing existence of an optimal
K for vortex flow.

We compare the two graphs Graph 5.8 and Graph 5.19 and we find that
the optimal K lies between 1.1 and 1.2 and for both the cases values are
almost equal.

So our further work will be to develop a mathematical theory for the
convergence of the method with respect to K and trying to find out which
could be the optimal K. But as the L2 error in the velocity is of the order
0.5, it suggests that the above method is not that accurate. We would like
to reduce the error significantly. So we might have to modify the method.
One way of doing so could be to introduce time dynamics into the method.
Uptil now we have only considered image data given at a particular point of
time. But as it is not working accurately, we could try providing image data
at various instants of time and then try to recover the flow velocity. Also
uptil now we have only entered images which are given by a mathematical
formula. Henceforth we will consider images E given in form of pixels i.e
totally discrete data and then try to capture the velocity. We could then
see what sort of information is required to capture the velocity accurately.
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Chapter 6

Conclusion

The main aim of the thesis was to build a method to determine the two
dimensional velocities of a fluid by capturing the movement of the objects in
the fluid. If such a method could be developed, then we could try to apply
it to determine the motion of clouds using data from the geo-stationary
satellites. This information could be useful for farmers, meterologists, etc.
This chapter will summarize the main contributions of the thesis and will
also hint at future work to be done.

6.1 Contributions

6.1.1 Methodology

1. In the second chapter, we determined fluid flow velocities by min-
imising the Horn-Schunck functional along with the two constraints:
the data conservation constraint and the smoothness constraint. We
pointed out with illustrations why they were needed. Then we used
a finite difference iterative scheme to solve the problem in case of a
simple example whose somain of definition is the unit square and we
already know the exact velocity of the fluid.

2. In the third chapter, we proved that there exists a unique minimiser
of the Horn-Schuck functional subject to some conditions and we also
showed the regularity of the minimizer and some estimates on it in
terms of the given image data which suggested that the velocity field
obtained depepnds continuously on the image derivatives, the domain
of defintion and the smoothing parameter.

3. In the fourth chapter, we determined fluid flow velocities of the same
example as in the first chapter by minimising the Horn-Schunck func-
tional and implemented it using the finite element method with the
help of deal.II software in C++. Then the results of the finite differ-
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ence method from the first chapter and the finite element method in
this chapter were compared.

4. In the fifth chapter, we took up the cloud motion problem and as-
sumed that the underlying fluid flow is compressible and a potential
flow. Then we modified the Horn Schunck functional, as we wanted to
relax the conditions required for solving the fluid flow problem using
the original functional, and found out the minimising equations. We
then solved two problems using the finite element method using the
Freefem++ software: the first one being the same example as tested
in chapter one and the second one being a flow due to point vortex
with source of the vortex outside the domain of definition.

6.1.2 Results

1. After the comparing the finite difference and the finite element method
implemented in the second and fourth chapters we found out that the
finite element method was comparitively far more better than the finite
difference method. With this idea we went about solving the cloud
motion problem using the finite element method.

2. As we had to change our assumptions on the flow we modified the
Horn-Schunck functional and solved the cloud motion problem using
the finite element method. We had two test cases and for testing
the accuracy of the results we had moved the fluid with a pre-defined
velocity and tried to recover the same. But we found that the results
were not that accurate in the sense that the relative L2 error was of
order 0.5-1.0. Different values of the smoothing parameter K was tried
out but the error order remained the same. This suggested a problem
with the method.

6.1.3 Inference

The results obtained in chapter five suggested that the method used had
some problems. One of the problems could be because of the lack of infor-
mation. We had always considered image data at a fixed time. We never
considered image sequences at different instants of time. This suggests the
future work which could be done.

6.2 Future work

We could try and modify our method so that we can incorporate images at
various instants of time. We would then have sufficient information about
the fluid flow which could help us calculate the flow field accurately. Fur-
thermore we have calculated the flow field with continuous information of a
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moving object in the fluid. In future we will try calculating the flow field
when have information of the image in form of pixels. We would like to
create a good method finally so that we provide the best information about
cloud motion to the farmers, meterologists who work hard for the sake of
the benefit of the world to make it a better and safer place to live in.
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Appendix A

Rate of change of image
brightness

Consider a patch of brightness pattern that is displaced a distance δx in the
x-direction and δy in the y-direction in time δt. The brightness of the patch
is assumed to remain constant so that

E(x, y, t) = E(x+ δx, y + δy, t+ δt)

Expanding the right hand side about the point (x, y, t) we get,

E(x, y, t) = E(x, y, t) + δx
∂E

∂x
+ δy

∂E

∂y
+ δt

∂E

∂t
+ ε

where ε contains second and higher order terms in δx, δy and δt. After
subtracting E(x, y, t) from both sides and dividing through by δt we have

δx

δt

∂E

∂x
+
δy

δt

∂E

∂y
+
∂E

∂t
+O(δt) = 0

where O(δt) is a term of order δt, and we assume that δx and δy vary as δt.
In the limit as δt→ 0 this becomes

∂E

∂x

dx

dt
+
∂E

∂y

dy

dt
+
∂E

∂t
= 0

which is same as
Et +∇E·U = 0

where U = (u, v) and u = dx
dt , v = dy

dt .
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Appendix B

Existence Of An Unique
Global Minimizer

First we will show that the functional J(U), as given in (2.2), is continuous
on J(Ω). We use the following results (See [RV] )

Let X be an open set in a normed linear space L with norm ‖.‖.

Theorem B.0.1. Let J be a convex functional on X. If J is bounded from
above in a neighbourhood of a point U0 ∈ X then it is locally bounded i.e
each U ∈ X has a neighbourhood on which J is bounded.

Proof. :- We first show that if J is bounded above in an ε-neighbourhood
of some point, it is bounded below in the same neighbourhood. Taking the
point 0 for convinience, suppose |J(U)| ≤ B ∀U ∈ Nε(0) where Nε(0) is a
neighbourhood of the origin given by

Nε(0) = {U ∈ X : ‖U‖ < ε}

Since

0 =
1

2
U +

1

2
(−U)

By convexity of J we get,

J(0) ≤ 1

2
J(U) +

1

2
J(−U)

This gives,
J(U) ≥ 2J(0)− J(−U)

Now, ‖U‖ < ε implies ‖ − U‖ < ε.

Therefore
−J(−U) ≥ −B, J(U) ≥ 2J(0)−B

94



This means J is bounded from below.

Now for proving the theorem, we take J to be bounded from above by
B on an ε-neighbourhood N of the origin. We will show J to be bounded in
a neighbourhood of U ∈ X,U 6= 0. We choose ρ > 1 so that V = ρU ∈ X
and let λ = 1

ρ .Then

M = {W ∈ L : W = (1− λ)Y + λV, Y ∈ N}

is a neighbourhood of λV = U with radius (1− λ)ε. Moreover

J(W ) ≤ (1− λ)J(Y ) + λJ(V ) ≤ B + J(V ).

So J is bounded above on M and by he first part of this proof J is bounded
below on M .

Definition B.0.1. A functional J defined on an open set X is said to
be locally Lipschitz if at each U ∈ X ∃ as neighbourhood Nε(U) and a
constant K(U) s.t.if V,W ∈ N , then,

|J(V )− J(W )| ≤ K‖V −W‖

If this inequaltiy holds throughout a set Y ⊆ X with K independent of U
then we say that J is Lipschitz on Y .

Theorem B.0.2. Let J be convex on an open set X ⊆ L. If J is bounded
from above in a neighbourhood of one point of X, then J is locally Lipschitz
in X.

Proof. By Theorem B.0.1, J is locally bounded. So given U0 we may find
a neighbourhood N2ε(U0) ⊆ X on which J is bounded, say by M . Then J
satisfies the stated Lipschitz condition on Nε(U0), for if it does not, we may
choose U1, U2 ∈ Nε(U0) s.t.

J(U2)− J(U1)

‖U2 − U1‖
>

2M

ε

Then we may choose α > 0 s.t. U3 = U2 + α(U2 −U1) is in N2ε(U0) and
‖U3−U2‖ = ε. Because J is convex on the line through U1, U2, U3 , we may
use the following inequality,

J(U3)− J(U2)

‖U3 − U2‖
≥ J(U2)− J(U1)

‖U2 − U1‖
>

2M

ε

This gives us J(U3)− J(U2) > 2M , contradicting the fact that |J | ≤M .

Hence J is locally Lipschitz.
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Theorem B.0.3. Let J be convex on X. If J is bounded from above in an
neighbourhood of one point of X, then J is continuous on X.

Proof. Theorem B.0.2 implies J is locally Lipschitz, from which continuity
follows immediately.

Theorem B.0.4. The functional J as given in (2.2) is continuous

Proof. We will use the Theorem B.0.3 to prove our statement. In our case
X = L = J(Ω). Now 0 ∈ X and J(0) = 1

2

∫
ΩE

2
t dxdy

We have assumed our image E and its derivative Ex, Ey, Et are bounded
by M . Let U ∈ J(Ω) s.t.‖U‖Z < 1. So

|J(U)| = |1
2

∫
Ω

((∇E·U)) + Et)
2 +

K

2

∫
Ω
‖∇u‖2 + ‖∇v‖2

≤ 1

2

∫
Ω

((∇E·U)) + Et)
2 +

K

2
‖U‖2Z

≤ 1

2

∫
Ω

(E2
t + (∇E.U)2 + 2·Et·(∇E·U)) +

K

2
‖U‖2Z

=
1

2

∫
Ω

(E2
t + (Exu+ Eyv)2 + 2·Et·(Exu+ Eyv)) +

K

2
‖U‖2Z , [U = (u, v)]

≤ 1

2

∫
Ω

[M2 +M2(u+ v)2 + 2·M ·(
∫

Ω
(∇E)2)

1
2 (

∫
Ω
U2)

1
2 ] +

K

2
‖U‖2Z(Holder’s Inequality)

≤M2·1
2

∫
Ω

(1 + 2(u2 + v2) +M.(

∫
Ω
M2)

1
2 ‖U‖Z +

K

2
‖U‖2Z

≤M2·1
2

(

∫
Ω

) +M2·‖U‖2Z +M2·(
∫

Ω
) +

K

2

≤ 3

2
·M ·µ(Ω) +M2 +

K

2
.

<∞.

where µ(Ω) is the measure of our bounded domain Ω. So in an ε(= 1)
neighbourhood of 0, J(U) is bounded above.Also J is convex(By (3.1)). So
using the above Theorem B.0.3 we have J is continuous for all U ∈ J(Ω).

Now we show the existence of the derivative of (2.2).

B.1 Existence Of Gateaux Derivative Of J

Theorem B.1.1. The Gateaux Derivative of (2.2) exists.

Proof. The Gateaux Derivative of J at the point U acting on V is defined
as

lim
ε→0

J(U + εV )− J(U)

ε
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if it exists and is denoted by J ′(U, V )
By (3.2), the Gateaux Derivative of J is

J ′(U ;V ) =

∫
Ω

(Et + (∇E·U))(∇E·V ) +K

∫
Ω

(∇u1·∇v1) + (∇u2·∇v2)

where
U = (u1, u2), V = (v1, v2).

We will show it is well defined.

Now,

|J ′(U ;V )| ≤ |
∫

Ω
(Et + (∇E·U))(∇E·V )|+K|

∫
Ω

(∇u1·∇v1) + (∇u2·∇v2)|

≤ |
∫

Ω
Et(∇E·V )|+ |

∫
Ω

(∇E·U)(∇E·V )|+K|
∫

Ω
(∇u1·∇v1) + (∇u2·∇v2)|

≤ ‖Et‖H‖∇E·U‖H‖∇E·U‖H‖∇E·V ‖H +K(‖∇u1‖H‖∇v1‖H + ‖∇u1‖H‖∇u1‖H)

By the inequality,(a+ b)2 ≤ (a+ b)2 + (a− b)2 = 2(a2 + b2), we have,

‖∇E.U‖H ≤
[
2‖Ex‖2L∞

∫
Ω
u2

1 + 2‖Ey‖2L∞

∫
Ω
u2

2

] 1
2

≤
[
2 max

{
‖Ex‖2L∞ , ‖Ey‖2L∞

}] 1
2 ‖U‖H

Hence we obtain

|J ′(U, V )| ≤ C1(‖U‖H + ‖U‖H‖V ‖H + ‖∇u1‖H‖∇v1‖H + ‖∇u2‖H‖∇v2‖H)

≤ C1‖U‖H + C1[‖U‖2H + ‖∇u1‖2H + ‖∇u2‖2H ]
1
2 .[‖V ‖2H + ‖∇v1‖2H + ‖∇v2‖2H ]

1
2

= C1(‖U‖H + ‖U‖Z ·‖V ‖Z) <∞.

where,

C1 = 2 max
{
‖Ex‖2L∞ , ‖Ey‖2L∞ ,

‖E2
t ‖H .‖Ex‖2L∞

2 ,
‖E2

t ‖H .‖Ey‖2L∞
2 , K2

}
.

So J ′(U, V ) exists and is well defined.
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B.2 Equivalence of J′(U)=0 and existence of a
minimizer for J

Theorem B.2.1. If the Gateaux derivative vanishes at a point U = U0 then
it is a minimizer of (2.2).

Proof. We have,

J(U0 + ε(V − U0)) = J((1− ε)U0 + εV )

≤ (1− ε)J(U0) + εJ(V ) (By Convexity of J)

for any V ∈ J(Ω). Let V − U0 = H. Then,

J(U0 + εH)− J(U0) = ε(J(V )− J(U0))

This gives,
J(U0 + εH)− J(U0)

ε
= J(V )− J(U0)

Taking limit on both sides as ε → 0, the left hand side goes to J ′(U0)
and the right hand side remains constant as it is independent of ε. But
J ′(U0) = 0. So J(V )− J(U0) ≥ 0 ∀V ∈ J(Ω).

Hence J(V ) ≥ J(U0) ∀V ∈ J(Ω). So U0 minimizes J globally.

Theorem B.2.2. If there is a global minimizer of (2.2) at U = U0 then
Gateaux Derivative of J at U0 vanishes.

Proof. Suppose not. Then,

lim
ε→0

J(U0 + εH)− J(U0)

ε
= K

If K > 0 then,

J(U0 + εH)− J(U0)

ε
>
K

2
(for sufficiently small ε).

If ε < 0 then,

J(U0 + εH)− J(U0) < ε
K

2

and hence,

J(U0 + εH) < J(U0) + ε
K

2
< J(U0)

which contradicts the fact that U0 is a global minimizer of J as U0 + εH ∈
J(Ω) when H ∈ J(Ω).
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If K < 0 then,

J(U0 + εH)− J(U0)

ε
< 2K (for sufficiently small ε).

If ε > 0 then,
J(U0 + εH)− J(U0) < ε2K.

and hence,
J(U0 + εH) < J(U0) + ε2K < J(U0)

which again contradicts the fact that U0 is a global minimizer of J as U0 +
εH ∈ J(Ω) when H ∈ J(Ω).

So the Gateaux derivative of J at the global minimum point U0 is 0.

So it follows from above that if there is an unique solution of J ′(U) = 0
then that unique solution is the global minimizer for J , where J is convex.
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Appendix C

Conjugate Gradient method

C.1 Introduction

The solution of the approximate problem: find uh ∈ Vh :

a(uh, vh) = F (vh) ∀vh ∈ Vh (C.1)

can be found using iterative methods. One such method is the conjugate
gradient method. We will discuss about theory of the method in this chapter.
Let {φi}Nh

i=1 be a basis of Vh. Let A be the stiffness matrix given by A =
(a(φi, φj)) and f = (F (φi)). If a(., .) is symmetric, then (C.1) is equivalent
to the minimization problem

J(uh) = min
vh∈Vh

J(vh) (C.2)

where

J(v) =
1

2
vTAV − vT f, v ∈ RNh . (C.3)

So uh is a solution of (C.2) iff Auh = f .

C.2 Conjugate gradient

Definition C.2.1. The directions w1, w2 ∈ RN are said to be conjugate with
respect to the matrix A if

wT1 Aw2 = 0

In the conjugate gradient method, we construct conjugate directions
using the gradient of the functional. Then the functional is minimised by
proceeding along the conjugate direction. We have the following theorem

Theorem C.2.1. Let w1, w2, ...., wN be n mutually conjugate directions. Let

xk+1 = xk − λkwk
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where λk minimizes

φ(λ) = J(xk − λwk), λ ∈ R

J is given in (C.3). When x1 ∈ RN is given, we have

xN+1 = x∗

where
Ax∗ = f

Proof. Let
rn = −J ′(xn) = f −Axn

Since λk minimizes φ(λ), we have

φ′(λk) = (J ′(xk − λkwk),−wk) = 0

This gives

λk =
(rk)

Twk
(wk)TAwk

(C.4)

Since w1, w2, ....wN are mutually conjugate directions, they are linearly in-
dependent. Therefore there exist αi, i ≤ i ≤ n, such that

x1 − x∗ =

n∑
k=1

αkwk

From this, using the fact that wj are mutually conjugate, we obtain

(x1 − x∗)TAwj = αj(wj)
TAwj

This gives

αj =
(x1 − x∗)TAwj

(wj)TAwj
(C.5)

Using induction we show that

αk = λk

Since Ax∗ = f , we have

r1 = f −Ax1 = A(x∗ − x1)

This shows that
α1 = λ1

Let αi = λi for 1 ≤ i ≤ k. From the definition of xk we obtain,

xk = x1 −
k−1∑
i=1

λiwi = x1

k−1∑
i=1

αiwi,
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(by induction hypothesis). Since

(wi)
TAwk = 0, 1 ≤ i ≤ k − 1,

we get
(xk − x1)TAwk = 0

This together with (C.4) and (C.5) shows that

αk = λk

Thus αk = λk for 1 ≤ k ≤ n. The definition of xk implies

xN+1 = x1 −
n∑
i=1

λiwi = x1 −
n∑
i=1

αiwi = x∗

Now the final theorem in this Appendix is about the iterations to taken
for implementing the conjugate gradient method and the convergence of the
method to the actual solution of Au = f .

Theorem C.2.2. Let x0 ∈ RN . Define w1 = f − Ax1 Knowing xn and
wn−1 we define xn+1 and wn by

xn+1 = xn + αnwn

wn = rn + βnwn−1

where

rn = f −Axn, αn =
(rn, wn)

(wn, Awn)
, βn =

(rn, rn)

(rn−1, rn−1)

Then wn are mutually conjugate directions and xN+1 is the unique solution
of Ax = f .

Proof. A proof of this theorem can be found in [DL69].

Remark C.2.1. It can be shown that

xn − xN+1 ∼
(

1−
√
c

1 +
√
c

)n
where c = m

M ,m = inf
x 6=0

(Ax, x)

‖x‖2
,M = sup

x 6=0

(Ax, x)

‖x‖2
. The convergence rate

for conjugate gradient method is faster than the steepest descent method,
atleast for quadratic functionals. Also as Condition Number of A ∼ C

h2

when Vh ⊂ H1(Ω), so conjugate gradient method is preferred over steepest
descent method for finite elements.
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