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Abstract

Inverse problems are related to natural fields like atmospheric flows, medical diagnostics, com-
puter vision and many more. The major challenge lies in modelling an inverse problem, inclusion
of necessary parameters to recover physical entities using partial data or boundary data and
an efficient numerical implementation to determine these entities. The main aim of this thesis
is to develop suitable models and efficient numerical implementation of such models for inverse
problems in fluid flows and tomography.

Our motivation for studying inverse problems in fluid flows is to understand cloud motion
from satellite images using the optical flow method (OFM). For tracking such motion, we applied
OFM to images that were generated synthetically by solving the 2D incompressible Stokes, Euler
and Navier-Stokes equation. We propose an optical flow algorithm based on variational methods
so as to recover fluid motion governed by Stokes and Navier-Stokes equations. We formulate a
minimization problem and determine conditions under which solution exists. Numerical results
using finite element method not only support theoretical results but also show that Stokes flow
forced by a potential are recovered almost exactly.

In the field of inverse problems in tomography, we present an efficient and novel numerical
algorithm for inversion of transforms arising in imaging modalities such as ultrasound imaging,
thermoacoustic and photoacoustic tomography, intravascular imaging, non-destructive testing,
and radar imaging with circular acquisition geometry. Our algorithm is based on recently discov-
ered explicit inversion formulas for circular and elliptical Radon transforms with radially partial
data derived by Ambartsoumian, Gouia-Zarrad, Lewis and by Ambartsoumian and Krishnan.
These inversion formulas hold when the support of the function lies on the inside (relevant in
ultrasound imaging, thermoacoustic and photoacoustic tomography, non-destructive testing),
outside (relevant in intravascular imaging), both inside and outside (relevant in radar imaging)
of the acquisition circle. Given the importance of such inversion formulas in several new and
emerging imaging modalities, an efficient numerical inversion algorithm is of tremendous top-
ical interest. The novelty of our non-iterative numerical inversion approach is that the entire
scheme can be pre-processed and used repeatedly in image reconstruction, leading to a very fast
algorithm. Several numerical simulations are presented showing the robustness of our algorithm.
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Chapter 1

Introduction

Inverse problems have connections to natural fields like atmospheric flows, medical diagnostics,
computer vision and many more. Modeling an inverse problem, inclusion of necessary parame-
ters to show an existence of a unique solution, efficient numerical implementation to determine
the solution are few of the important questions which arise in the study of inverse problems. The
aim of this thesis is precisely to study two major inverse problems. The first one is related to
recovery of fluid motion. We use the technique of optical flow estimation to trace passive scalars
which are propagated by the flow. Examples of such scalars are smoke, brightness patterns of
dense rain-bearing clouds whose intensity remains constant atleast for a short time span. The
second one deals with the inversion of circular and elliptic Radon transforms. Such a problem
has its importance in detection of tumors, radar imaging and sonar imaging.

1.1 What is Optical Flow

Motions occur from micro to macro scale level. For example motion of atoms in our body
occurs at a micro scale level whereas our planet Earth moves around the sun at a macro scale
level. Activities like eating, drinking, sleeping, dancing, singing induces motion. Such is human
nature that we cannot do without motion. But all of these are so natural that we take them
for granted. We need to understand the transformations our world is undergoing else we would
not be able to survive. The main difference between us and robots is the concept of perception
of changing objects. If robots were to exist in our world, along with us, then they should also
have this sense of perception. What is required is a general and flexible representation of visual
motion that can be used for many purposes and can be computed efficiently [96].

Optical flow is the distribution of movement of brightness pattern in an image. It can arise
from relative motion of objects and viewer. Thus, a good bit of information can be obtained
from the optical flow about the spatial arrangement of the objects viewed and the rate of change
of this arrangement.

1.1.1 Relationship To Object Motion

The relationship between optical flow in the image plane and velocities of objects in the 3D
world is not obvious. For example, when a changing picture is projected onto stationary screen
we sense motion. Conversely, a moving object may give rise to constant brightness pattern. For
example, a uniform sphere exhibits shading because its surface elements are oriented in many
directions. Yet when it is rotated, there is no optical flow at any point of the image, as shading
does not move with the surface. (Fig 1.1).
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(a) Original Image (b) Image after object was rotated

Figure 1.1: Shading effect: The shading at the bottom of the object looks same even though
the object has been rotated. These images were taken at TIFR-CAM, Bangalore

More specifically, consider the diagram in Figure 1.2 which illustrates how the translation
and rotation of the camera cause the projected location p in the scene to move.

Figure 1.2: A point P in the scene projects to a point in the [x, y] coordinate system of the
image plane of a camera centered at the origin of the camera coordinate system [X,Y, Z], with
its optical axis pointing in the direction Z. The motion of the camera is described by its
translation [TX , TY , TZ ] and rotation [ΩX ,ΩY ,ΩZ ]. Courtesy: ([18]).

Likewise, if point P is moving independently, its projection on the image plane will change,
even when the camera is stationary. It is this vector field, U(x, y) = [u(x, y), v(x, y)], describing
the horizontal and vertical image motion, that is to be recovered at every point in the image.
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(a) 4th October, 2014 (b) 5th October, 2014 (c) 6th October, 2014

Figure 1.3: Panochromatic Geostationary satellite images of the Indian subcontinent for three
consecutive days. Courtesy: Dundee Satellite receiving station.

1.1.2 Problems In Computing The Optical Flow
Pattern

Computing optical flow at a point in the image without considering the neighboring points
needs additional constraints. This is because the velocity field at each image point has two
components while the change in image brightness at a point due to motion yields only one
constraint [49]. To illustrate this we consider a brightness pattern where brightness varies as a
function of one image coordinate but not the other. Any motion of the pattern in one direction
changes the brightness at a particular point, but motion in the other coordinate yields no
change. So components of movement in the second direction cannot be computed locally. Thus
to determine the flow completely additional constraints must be introduced.

Even if additional constraints are introduced, the notion of determining flow could be diffi-
cult. For example let us consider a flag waving against wind. Suppose it were a rigid object, its
motion could be described by providing the coordinates of one particle and the orientation of
an orthogonal reference frame attached to that particle. However, since it is a non-rigid object,
to describe it at any instant of time, trajectory of each individual particle on the flag needs
to be specified. Thus to consider “motion” of a non-rigid object, the rigidity properties of the
object is important. What we want to capture mathematically is the notion of overall motion
when indeed there is one that corresponds to our intuition [93].

1.1.3 Application to Cloud Motion

In this thesis our main aim is to apply optical flow techniques to one of the most important and
interesting research area of cloud motion estimation. Geostationary satellites are a valuable
source of rainfall information due to the availability of a global view of clouds at an acceptable
spatial and temporal resolution. However to retrieve the information from the satellite images is
a significant challenge. For example, precipitation peaks while the cloud area is rapidly growing
and reduces at the time of maximum cloud area [95], Visible(VIS) and Infrared (IR) channels of
the satellites can see only the top-of-the-clouds, not rain at the surface of the earth. Moreover,
how a cloud changes with time reflects atmospheric instabilities that occur and most instabilities
lead to precipitation. As a consequence, we need some descriptions of cloud motion and pattern
changes as an explicit link to rain rate.

Meteosat Second Generation satellites replaced in 2002 the former Meteosat, providing a
significantly increased amount of information as compared to the previous version in order
to continuously observe the whole Earth [89]. In this sense, MSG generates images every 15
min with a 10-bit quantization, a spatial sampling distance of 3 km at subsatellite point in
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11 channels, from the visible to the infrared channel, and 1 km in the high resolution visible
channel.

Figure 1.4: In this image, we illustrate, using different greyscale values, the original cloud struc-
ture layer classification estimated from the meteorological satellite channels (http://.meteo.uni-
bonn.de).

Among the most important applications, numerical weather prediction combines the infor-
mation from different channels, mainly from the VIS 0.8, WV 6.2, WV 7.3 and IR 10.8 channels,
to compute the displacement of the clouds between two time instants, that constitute the most
important source of information for this application.

It is well known [49] that tracking rigid body motion by OFM can be done satisfactorily
using nonlinear least squares technique whereas it is totally inadequate for fluid flow [45]. This
is because rigid body motion have features like geometric invariance where local features such as
corners, contours etc are usually stable over time [43]. However for fluid images these features
are difficult to define leave alone being stable. This is one of the main problems in understanding
the connection between optical flow and fluid flow [74, 29, 67, 63]. Unlike previous approaches
where optical flow techniques were used to track rigid body motion, we use such techniques to
recover fluid flow velocity which generates motion by tracing scalars introduced into the flow.
The difference in the two approaches is shown via an experiment in Appendix D.

1.2 Inverse problem in Tomography

The second kind of inverse problem we deal with in this thesis is in the field of tomography.
Circular and elliptical Radon transforms arise naturally. They are extensively used in the study
of several modern imaging modalities such as ultrasound reflectivity imaging, thermoacoustic
tomography, photoacoustic tomography, intravascular imaging, non-destructive testing, and
radar imaging. The representation of a function by its circular Radon transform (CRT)and
various related problems arise in many areas of mathematics, physics and imaging science.
There has been a substantial spike of interest towards these problems in the last decade mainly
due to the connection between the CRT and mathematical models of several emerging medical
imaging modalities (See Figure 1.5).

In ultrasound imaging, ultrasonic pulses emitted from a transducer moving along a curve
(typically a circle), propagate inside the medium and reflect off inhomogeneities which are
measured by the same or a different moving transducer. Assuming that the speed of sound
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(a) Sonar Imaging. Courtesy: Woods Hole Oceano-
graphic Institution

(b) Breast Mammography. Courtesy: Silenia
Dimensions System

(c) Intravascular Ultrasound. Courtesy: Nat-
ural Computing Group, LIACS, Leiden Uni-
versity

(d) Radar Imaging. Courtesy: PSDgraphics

Figure 1.5: Various applications of inversion of Radon transforms
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propagation within the medium is constant and that the medium is weakly reflecting, the
pulses registered at the receiver transducer is the superposition of all the pulses reflected off
those inhomogeneities such that the total distance travelled by the reflected pulse is a constant.
This leads to the consideration of an integral transform of a function on a plane (which models
the image to be reconstructed), given its integrals along a family of circles (for the case of
identical emitter/receiver) or ellipses (for spatially separated emitter/receiver). The goal is
to recover an image of the medium given these integrals. In other words, one is interested
in the inversion of a circular or elliptical Radon transform. For a detailed discussion of the
mathematical model of ultrasound imaging, we refer the reader to [58, 59, 60]. Similarly,
the mathematical formulation of problems in thermoacoustic and photoacoustic tomography,
non-desctructive testing, intravascular imaging, radar and sonar imaging all lead to inversion
of circular or elliptical Radon transforms. For details, we refer the reader to the following
references [51, 8, 4].

1.3 Aim of the thesis

In connection to recovery of fluid flows, our aim is to track movement of vortex structures
generated by solving the 2D incompressible Stokes, Euler and Navier Stokes equation. Previous
work in this direction includes the Horn-Schunck algorithm which implements a constraint free
first order regularization approach with a finite differencing scheme [49], estimating optical flow
involving prior knowledge that the flow satisfies Stokes equation [88], higher order regularization
with incompressibility constraint coupled with mimetic finite differencing scheme [102] and an
optimal control approach for determining optical flow without differentiation of data [16].

To recover fluid-type motions, a number of approaches have been proposed to integrate
the basic optical flow solution with fluid dynamics constraints, e.g., the continuity equation
that describes the fluid property [29, 69] or the divergence-curl (div-curl) equation [29, 12] to
describe spreading and rotation. The main aim of our work is to track fluid flow by tracing
passive scalars which are propagated by the flow using simple flow dynamics and specifying
appropriate boundary conditions. In other words, we use optical flow techniques to efficiently
track fluid flow motion. Such a work has its importance in determining atmospheric motion
vectors (AMV), tracking smoke propagation, determining motion of tidal waves using floating
buoys. Since the basic idea in the variational approach is not to estimate locally and individually
but to estimate non-locally by minimizing a suitable functional defined over the entire image
section, we therefore prefer a variational approach.

In the field of tomography, our aim is to provide an efficient numerical implementation of
inversion formulas for a class of circular and elliptical Radon transforms with radially partial
data obtained in the papers [5, 6]. The main contribution of this thesis is a novel implementation
of the inversion formulas for a class of circular and elliptical Radon transforms with radially
partial data obtained Ambartsoumian, Gouia-Zarrad and Lewis in [5] and Ambartsoumian and
Krishnan in [6].

1.4 Overview of the thesis

Chapter 2. The Horn-Schunck optical flow estimation method is reviewed and applied on a
simple example to test the method.The image taken as an example is a compact dis-
tribution in the unit square in R2 and moved with a constant velocity. Two cases are
considered: in the first case, discrete image derivatives are taken and in the second case,
continuous image derivatives are taken. Then the finite difference iterative method is
applied to calculate the optical flow velocities and the results are analyzed.

Chapter 3. In this chapter, the mathematical theory of the Horn-Schunck method is devel-
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oped, with Dirichlet and Neumann boundary conditions on the optical flow velocities, and
existence and uniqueness of the solution to the optical flow problem is proved.

Chapter 4. The finite difference method in Chapter 2 did not give very good results and so
another method was tried out using finite elements and the same example was tested and
the results were analyzed.

Chapter 5. In this chapter, we deal with recovery of incompressible potential flows. We use a
variational approach by minimizing a functional and then apply it to two examples: the
first one is an object given by a compact distribution moving in the unit square in R2 and
the second one as flow of a fluid due to a vortex field situated outside the domain i.e the
unit square.

Chapter 6. We propose an optical flow algorithm based on variational methods to recover fluid
motion governed by Stokes and Navier-Stokes equations. We formulate a minimization
problem and determine conditions under which unique solution exists. Numerical results
using finite element method not only support theoretical results but also show that Stokes
flow forced by a potential are recovered almost exactly.

Chapter 7. We track vortex based motion governed by underlying 2D fluid flow satisfying
incompressible Euler and Navier-Stokes equations. A vorticity-streamfunction formulation
and optimization techniques are used. We use Helmholtz decomposition of the velocity
field and prove existence of a unique velocity and vorticity field for the linearized vorticity
equations. Discontinuous Galerkin finite elements are used to solve the vorticity equation
for Euler’s flow to efficiently track discontinuous vortices. Finally we test our method
with two vortex flows governed by Euler and Navier-Stokes equations at high Reynolds
number which support our theoretical results.

Chapter 8. Finally, we implement numerical inversion of a class of circular and elliptical Radon
transforms with partial radial data derived in “Inversion of the circular Radon transform
on an annulus” by Ambartsoumian, Gouia-Zarrad and Lewis, published in Inverse Prob-
lems and in a preprint “Inversion of a class of circular and elliptical Radon transforms,” by
Ambartsoumian and Krishnan. Several numerical computations validating these inversion
formulas are presented.
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Chapter 2

Horn-Schunck Optical Flow Method

2.1 Introduction

Optical flow method is the estimation of 2D velocities that are in apparent motion as seen
in successive image sequences. The estimation is based on the changes in spatio-temporal
brightness pattern recorded in such image sequences. Computing optical flow at a given point
in the image is an ill-posed problem because change in brightness pattern yields only one
constraint whereas there are two components of flow. Hence additional constraints are required
to determine the flow uniquely. In this chapter, we discuss the classical method of Horn and
Schunck[49]. The method is based on the assumption that the apparent velocity of the brightness
pattern varies smoothly almost everywhere in the image. Here gradient-based approaches and
finite difference methods are used. While Horn and Schunck optical flow method is used to
track rigid body motion, our aim is to use such optical flow techniques for tracking motion due
to fluid flow. The image sequences used to track motion are some passive scalars propagated
by the flow. The usual Horn and Schunck method in [49] is modified to incorporate non-unit
spacing grid and tested on a constant flow. Finally the results are analysed.

2.2 Constraints on the motion of an image

2.2.1 Data conservation

The approach of [49] exploits the assumption of data conservation (See Figure 2.1) i.e. image
intensity corresponding to a small image region remains the same, although the location of the
region may change. Our given data is a sequence of brightness patterns E(x, y, t) where (x, y)

Figure 2.1: Data Conservation assumption. The highlighted region in the right image looks
roughly the same as the region in the left image, despite the fact that it has moved. Courtesy:
([18]).
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Figure 2.2: The aperture problem: the solutions of (2.1) define a line in the (u, v)-space. The
vectors w1 and w2 are possible solutions. Courtesy: ([18])

represents the spatial coordinates and t is the time coordinate. As brightness of a particular
point in the pattern is constant, we have

dE

dt
= 0

By the chain rule for derivatives (see Appendix A) we have

∂E

∂x

dx

dt
+
∂E

∂y

dy

dt
+
∂E

∂t
= 0

This gives the data conservation constraint

Exu+ Eyv + Et = 0 (2.1)

where

u =
dx

dt
, v =

dy

dt
.

The equation (2.1) can also be written as

(Ex, Ey) · (u, v) = −Et

or

Et + U · ∇E = 0, U =

(
u
v

)
This means the solution set of (2.1) defines a line in the u− v space which is perpendicular

to the intensity spatial gradient ∇E. The component of the optical flow in the direction of the
brightness gradient (Ex, Ey) equals

−Et√
E2
x + E2

y

The problem is ill-posed as we cannot determine the component of movement in the direc-
tion of iso-brightness contours, at right angles to brightness gradient (one equation and two
unknowns). This is commonly referred to as the aperture problem. So the flow velocity (u, v)
cannot be computed locally without additional constraints
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Figure 2.3: The basic rate of change of image brightness equation constrains the optical flow
velocity. The velocity (u, v) has to lie along a certain line perpendicular to the brightness
gradient vector(Ex, Ey) in the velocity space. Courtesy: ([49]).

2.2.2 Smoothness constraints

The data conservation constraint (2.1) alone is not sufficient to accurately recover optical flow.
First, local motion estimates, based on data conservation, may only partially constrain the so-
lution. Consider a motion of a line in Figure 2.3. Within a small region, the data conservation
constraint cannot uniquely determine the motion of the line; an infinite number of interpreta-
tions are consistent with the constraint. This is commonly referred to as the aperture problem
[48]. This can be seen in Figure 2.4 with the interpretations of the movement of the brightness
pattern. Hence we cannot predict the motion of the image pattern when viewed through a
small aperture. Second and more importantly, motion estimates based on data conservation
constraint are very sensitive to noise in the images, particularly in regions where there is very
little spatial variation.

To overcome these problems, many approaches have exploited a spatial coherence assump-
tion. Neighboring points in the scene typically belong to the same surface and hence have
similar velocities. Since neighboring points in the scene project to neighboring points in the
image plane, we expect optical flow to vary smoothly. This assumption is typically implemented
as the smoothness constraint. Here we try to limit the difference between the flow velocity at a
point and the average velocity over a small neighborhood, containing the point. Equivalently,
we can minimize the sum of the squares of the Laplacians of x and y components of the flow.
We use this fact while calculating the minimization equations.

2.3 Problem statement

To estimate fluid flow, we trace passive scalars that are propagated by the flow. Examples
of such scalars are smoke, brightness patterns of dense rain-bearing clouds whose intensity
remains constant atleast for a short time span. These scalars can be represented by a function
E : Ω × R+ −→ R, where Ω ⊆ R2 is a bounded domain of the spatial coordinates and R+
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Figure 2.4: Illustration of the aperture problem (www.fisica.cab.cnea.gov.ar).

is the domain of the time coordinate. The field U of optical velocities over Ω, is obtained by
minimizing the functional

J(U) =
1

2

∫
Ω

(U · ∇E + Et)
2dxdy +

K

2

∫
Ω
‖∇U‖2 (2.2)

where U = (u, v). The first term in the functional is the data conservation constraint and
the second term in the functional is the smoothness constraint. K > 0 is a parameter, called
smoothing parameter, which is used to make the order of both the terms same so that each of
them has a significant contribution in calculation of the flow velocities. The boundary conditions
on the flow velocity could be either Dirichlet or Neumann.

The Euler-Lagrange equations obtained by the minimization of J are

(Et + U · ∇E)Ex −K∆u = 0

(Et + U · ∇E)Ey −K∆v = 0
(2.3)

(see Theorem (3.2.2)).

2.4 Discretization

Let Ω be discretized by the unit spacing grid and the grid points be indexed by (xi, yj) where
1 ≤ i, j ≤ N . Let the time axis be discretized by the unit spacing grid and indexed by tk,
1 ≤ k ≤M .

2.4.1 Estimating the partial derivatives of E

Horn-Schunck proposed the idea of replacing the derivatives of the image E with their finite dif-
ference approximations. The following estimates are used. Let Ex(xi, yj , tk) = Ei,j,kx , Ey(xi, yj , tk) =

Ei,j,ky , Et(xi, yj , tk) = Ei,j,kt Each of the estimates is the average of the first four differences taken
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over adjacent measurements in the cube as shown in (Figure 2.5).

Ei,j,kx ≈ 1

4
{Ei,j+1,k − Ei,j,k + Ei+1,j+1,k − Ei+1,j,k + Ei,j+1,k+1

− Ei,j,k+1 + Ei+1,j+1,k+1 − Ei+1,j,k+1}

Ei,j,ky ≈ 1

4
{Ei+1,j,k − Ei,j,k + Ei+1,j+1,k − Ei,j+1,k + Ei+1,j,k+1

− Ei,j,k+1 + Ei+1,j+1,k+1 − Ei,j+1,k+1}

Ei,j,kt ≈ 1

4
{Ei,j,k+1 − Ei,j,k + Ei+1,j,k+1 − Ei+1,j,k + Ei,j+1,k+1

− Ei,j+1,k + Ei+1,j+1,k+1 − Ei+1,j+1,k}

(2.4)

where i corresponds to the x-axis direction, j corresponds to the y-axis direction and k cor-
responds to the time axis and Ei,j,k represents the value of the image intensity at the (i, j)
position and at the kth stage i.e. Ei,j,k = E(xi, yj , tk).

2.4.2 Estimating the Laplacian of flow velocities

∆u and ∆v can be approximated using

∆u(xi, yj , tk) ≈ κ(ui,j,k − ui,j,k)

∆v(xi, yj , tk) ≈ κ(vi,j,k − vi,j,k)
where

ui,j,k =
1

6
{ui−1,j,k + ui,j+1,k + ui+1,j,k + ui,j−1,k}

+
1

12
{ui−1,j−1,k + ui−1,j+1,k + ui+1,j+1,k + ui+1,j−1,k}.

vi,j,k =
1

6
{vi−1,j,k + vi,j+1,k + vi+1,j,k + vi,j−1,k}

+
1

12
{vi−1,j−1,k + vi−1,j+1,k + vi+1,j+1,k + vi+1,j−1,k}.

(2.5)

The proportionality factor κ = 3 if the averages are computed as above and if the grid spac-
ing interval is of unit length. (Figure 2.6) illustrates the assignment of weights to neighboring
points.

2.5 Minimization equations

With all the approximations as shown in Sec 2.4.1 and Sec 2.4.2, the Euler-Lagrange Equations
in (2.3) can be written as

(K + E2
x)u+ ExEyv = (Ku− ExEt)

ExEyu+ (K + E2
y)v = (Kv − EyEt)

(2.6)

or
(K + E2

x + E2
y)(u− u) = −Ex(Exu+ Eyv + Et)

(K + E2
x + E2

y)(v − v) = −Ey(Exu+ Eyv + Et)
(2.7)

The discretized Euler Lagrange equations are as follows

(K + (Ei,j,kx )2 + (Ei,j,kx )2)(ui,j,k − ui,j,k) = −Ei,j,kx (Ei,j,kx ui,j,k + Ei,j,ky vi,j,k + Ei,j,kt )

(K + (Ei,j,kx )2 + (Ei,j,kx )2)(vi,j,k − vi,j,k) = −Ei,j,kx (Ei,j,kx ui,j,k + Ei,j,ky vi,j,k + Ei,j,kt )
(2.8)
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Figure 2.5: The three partial derivatives of image brightness at the center of the cube are each
estimated from the average of first differences along four parallel edges of the cube. Here the
column index j corresponds to the x-direction in the image, the row index i to the y-direction,
while k lies in the time direction: Courtesy ([49]).

Figure 2.6: The Laplacian is estimated by subtracting the value at a point(represented in the
figure by the central square with weight -1) from a weighted average of the values at neighboring
points. Shown here are suitable weights by which values can be multiplied: Courtesy ([49]).
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2.6 Discretized iterative scheme

The discretized Euler-Lagrange equations (2.8) lead to the following iterative scheme for solving
the optical flow problem

un+1
i,j,k = uni,j,k −

Ei,j,kx (Ei,j,kx uni,j,k + Ei,j,ky vni,j,k + Ei,j,kt )

K + (Ei,j,kx )2 + (Ei,j,ky )2

vn+1
i,j,k = vni,j,k −

Ei,j,ky (Ei,j,kx uni,j,k + Ei,j,ky vni,j,k + Ei,j,kt )

K + (Ei,j,kx )2 + (Ei,j,ky )2

(2.9)

where Ei,j,kx ,Ei,j,ky ,Ei,j,kt are given by (2.4) and uni,j,k,v
n
i,j,k are given by (2.5).

2.7 Courant-Friedrich-Lewey(CFL) condition

The scheme in 2.9 is obtained using an unit spacing grid. We now discretize our grid arbitrarily
with x−spacing as Mx, y-spacing as My. To choose Mt, we now introduce some conditions which
will depend on Mx and My. This has to be done so that the images we enter in our code should
be such that they remain close to each other depending on the grid size. These conditions are
called CFL conditions as they were invented by the trio- Courant, Friedrich and Lewey. The
natural choice for CFL condition is that the distance covered by the image in time Mt will be
less than the Mx and My so that two consecutive images remain in the same grid element.
So,

|uMt| ≤ CMx = h

|vMt| ≤ CMy = h

where C is the CFL number. This implies,

|Mt| ≤ Ch min

{
1

|u|
,

1

|v|

}

Since nothing is known apriori about min
{

1
|u| ,

1
|v|

}
so we choose C such that

Mt ≤ h. (2.10)

2.8 Modified Euler-Lagrange equations

The iterative formula (2.9) holds for Mx = My = Mt = 1. For our case we choose Mx = My = h
and Mt is chosen to satisfy (2.10). Hence

u(
K

(Mx)2
+ E2

x) + ExEyv = (
Ku

(Mx)2
− ExEt).

v(
K

(My)2
+ E2

y) + ExEyu = (
Kv

(My)2
− EyEt).

We can write the equation in matrix notations as follows

(
K

(Mx)2
+ E2

x ExEy

ExEy
K

(My)2
+ E2

y

)(
u
v

)
=


Ku

(Mx)2
− ExEt

Kv
(My)2

− EyEt
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Let

A =

(
K

(Mx)2
+ E2

x ExEy

ExEy
K

(My)2
+ E2

y

)
Then

Det(A) =
α4

(MxMy)2
+K

[
E2
x

(My)2
+

E2
y

(Mx)2

]
and (

u
v

)
=

1

Det(A)

(
K

(My)2
+ E2

y −ExEy
−ExEy K

(Mx)2
+ E2

x

)
Ku

(Mx)2
− ExEt

Kv
(My)2

− EyEt


This gives

u =
1

K
(MxMy)2

+
[

E2
x

(My)2
+

E2
y

(Mx)2

] [ u

(Mx)2

(
K

(My)2
+ E2

y

)
− Ex

(My)2
(vEy + Et)

]

v =
1

K
(MxMy)2

+
[

E2
x

(My)2
+

E2
y

(Mx)2

] [ v

(My)2

(
K

(My)2
+ E2

x

)
− Ey

(Mx)2
(uEx + Et)

]

Now let Mx = My = h and let Ex = Ex · Mx, Ey = Ey · My, Et = Et · Mt
Then (

u
v

)
=

1

Det(A)

(
α4u−KλExEt +KuE

2
y − ExEyKv

α4v −KλEyEt +KvE
2
x − ExEyKu

)

where A =

(
K + E

2
x ExEy

ExEy K + E
2
y

)
, Det(A) = α4 +K

(
E

2
x + E

2
y

)
and λ = h

Mt .

Hence we have

u =
1

K + E
2
x + E

2
y

[
(K + E

2
x + E

2
y)u− Ex(Exu+ Eyv + λEt)

]
v =

1

K + E
2
x + E

2
y

[
(K + E

2
x + E

2
y)v − Ey(Exu+ Eyv + λEt)

] (2.11)

2.9 The modified discretized iterative formula

The modified discretized iterative solution is given as

un+1
i,j,k = uni,j,k −

E
i,j,k
x (E

i,j,k
x uni,j,k + E

i,j,k
y vni,j,k + λE

i,j,k
t )

K + (E
i,j,k
x )2 + (E

i,j,k
y )2

vn+1
i,j,k = vni,j,k −

E
i,j,k
y (E

i,j,k
x uni,j,k + E

i,j,k
y vni,j,k + λE

i,j,k
t )

K + (E
i,j,k
x )2 + (E

i,j,k
y )2

(2.12)

where E
i,j,k
x = Ei,j,kx ·Mx, E

i,j,k
y = Ei,j,ky ·My, E

i,j,k
t = Ei,j,kt ·Mt and Ei,j,kx ,Ei,j,ky ,Ei,j,kt are given by

(2.4), uni,j,k,v
n
i,j,k are given by (2.5), λ= h

Mt .
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2.10 Convergence of Horn and Schunck Optical Flow estimation
method

We have obtained an iterative formula for finding out the solution to the optical flow problem.
The next important thing is to show the convergence of the method. It is shown in [61] that the
iterative equations (2.9) (commonly referred to as the Jacobi iterations) converge. The iterative
equations (2.9) is based on a unit spacing grid. whereas the iterative equations (2.12) is based

on a non-unit spacing grid. This introduces an additional λ factor with E
i,j,k
t in (2.12). Hence

modifying the proof in [61] it can be shown that (2.12) also converges.

2.11 Numerical examples

(2.12) is now used to determine motion governed by a constant flow. The scalar E0 representing
the image at time t0 is given as

E0(x, y) = E(x, y, 0) = e−50[(x−1/2)2+(y−1/2)2].

The image sequence E is generated by advecting E0 with a constant velocity of (u, v) = (1, 1).
So at time t, E is given by

E(x, y, t) = E0(x− ut, y − vt) = E(x− ut, y − vt, 0)

using the characteristic method. We choose h = 0.01 and Mt = 0.01 satisfying (2.10). The
relative L2 error in velocity is defined as

Relative L2 error =
‖Ue − Uo‖
‖Ue‖

(2.13)

and the advection error is defined as

Advection Error = ‖Et + Uo · ∇E‖ (2.14)

where Ue is the exact velocity and Uo is the obtained velocity and the norm ‖ · ‖ is the usual
L2 norm for vector functions.

2.11.1 Using finite differences for derivatives of E

First using images at two consecutive times 0 and Mt derivatives of E are evaluated at time
t = 0. Figure 2.11.1 shows the obtained velocity plots for K = 1.

Figure 2.7: Recovered velocity vectors at t = 0
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Table (2.1) shows the L2 error in the velocity and the advection error for various valus of
K.

K Relative L2 error Advection Error

0.2 1.23 1.67 e-10
1 1.12 1.43 e-10
2 1.37 1.27 e-10

Table 2.1: Variation of relative L2 error and advection error with the smoothing parameter K

2.11.2 Using analytical derivatives of E

Since E ∈ C∞, the derivatives of E can be evaluated exactly. Figure 2.11.1 shows the obtained
velocity plots for K = 1.

Figure 2.8: Recovered velocity vectors at t = 0

Table (2.2) shows the L2 error in the velocity and the advection error for various valus of
K.

K Relative L2 error Advection Error

0.2 0.54 2.21 e-11
1 0.41 2.15 e-11
2 0.49 2.33 e-11

Table 2.2: Variation of relative L2 error and advection error with the smoothing parameter K

2.12 Conclusions

The results show that the relative L2 error is of order 1 and it does not improve irrespective of
different values of K. The problem could be due to the approximation of the Laplacians of the
velocities and derivatives of E by finite differences. In an attempt to improve the order of the
relative error we could try the finite element method as it uses the weak form of the PDE and
solves it exactly. Also the boundary conditions can be incorporated well into the finite element
structure. So with this idea we proceed onto implementing the finite element method to calculate
the optical flow velocities. But before doing that we would want to establish the existence and
uniqueness of the solution of the optical flow problem and also derive some estimates on the
solution.
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Chapter 3

Existence, Uniqueness and Stability
Results

3.1 Introduction

In the previous chapter, we discussed the Horn and Schunck method and used it to try and
recover motion due to fluid flows. A numerical implementation of minimization of optical flow
functional (2.2) using finite difference method was performed. In this chapter, we show existence
and uniqueness of minimizer for the optical flow functional under some given conditions and
also derive some estimates on the solution.

3.2 Existence and uniqueness of minimizer

We set Ω to be the unit square [0,1]Ö[0,1]. We want to minimize the functional J(U) over
the field of optical flow velocities U in Ω where J(U) is given in (2.2). We assume our image
E ∈W 1,∞(Ω) and hence E ∈ L2(Ω) as Ω is bounded because∫

Ω
E2dxdy ≤ ‖E‖2L∞

∫
Ω
dxdy

≤ ‖E‖2L∞
<∞

as |Ω| =
∫

Ω dxdy = 1.

Theorem 3.2.1. The functional given in (2.2) is convex with respect to U .

Proof. Let

U1 =

(
u1

v1

)
and U2 =

(
u2

v2

)
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and let (.) denote the usual inner product in R2. Then for 0 ≤ α ≤ 1 we have,

J(αU1 + (1− α)U2) =
1

2

∫
Ω

((αU1 + (1− α)U2) · ∇E) + Et)
2dxdy

+
K

2

∫
Ω
‖∇(αu1 + (1− α)u2)‖2+‖∇(αv1 + (1− α)v2)‖2dxdy

≤1

2

∫
Ω

((αU1 + (1− α)U2) · ∇E)2 + (α+ 1− α)E2
t + 2Et((αU1 + (1− α)U2) · ∇E)dxdy

+
K

2

∫
Ω
‖∇(αu1 + (1− α)u2)‖2+‖∇(αv1 + (1− α)v2)‖2 dxdy

=
1

2

∫
Ω

((αU1 + (1− α)U2) · ∇E)2 + (α+ 1− α)E2
t + 2Et((αU1 + (1− α)U2) · ∇E)dxdy

+
K

2

∫
Ω
‖(α∇u1 + (1− α)∇u2)‖2 + ‖(α∇v1 + (1− α)∇v2)‖2dxdy

(3.1)
Now,∫

Ω
Et((αU1 + (1− α)U2) · ∇E)dxdy = α

∫
Ω
Et(U1 · ∇E)dxdy + (1− α)

∫
Ω
Et(U2 · ∇E)dxdy

Let a, b ∈ R and A, B ∈ V, an inner product space with inner product (·)V and let ‖ · ‖ be the
vector norm for functions defined as

‖(f1, f2)‖2 = |f1|2 + |f2|2.

We have,

(αa+ (1− α)b)2 = α2a2 + (1− α)2b2 + α(1− α)2ab

≤ α2a2 + (1− α)2b2 + α(1− α)(a2 + b2)

= αa2 + (1− α)b2 where 0 ≤ α ≤ 1.

and

‖(αA+ (1− α)B)‖2 = α2‖A‖2 + (1− α)2‖B‖2 + α(1− α)2(A·B)V

≤ α2‖A‖2 + (1− α)2‖B‖2 + α(1− α)(‖A‖2 + ‖B‖2)

= α‖A‖2 + (1− α)‖B‖2, where 0 ≤ α ≤ 1.

Therefore,

K

2

∫
Ω
‖(α∇u1 + (1− α)∇u2)‖2 + ‖(α∇v1 + (1− α)∇v2)‖2dxdy

≤ K

2
{α
∫

Ω
‖∇u1‖2 + ‖∇u2‖2dxdy + (1− α)

∫
Ω
‖∇v1‖2 + ‖∇v2‖2dxdy}

Again,∫
Ω

((αU1 + (1− α)U2) · ∇E)2dxdy =

∫
Ω

(α(U1 · ∇E) + (1− α)(U2 · ∇E))2dxdy

≤ α
∫

Ω
(U1 · ∇E)2dxdy + (1− α)

∫
Ω

(U2 · ∇E)2dxdy
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This gives,
J(αU1 + (1− α)U2) ≤ αJ(U1) + (1− α)J(U2), 0 ≤ α ≤ 1 (3.2)

So J is a convex functional w.r.t U .

Theorem 3.2.2. The unique minimizer of J will be given by the unique solution of J ′(U) = 0,
where ′ denotes the Gateaux Derivative.

Proof. See Appendix B

We now determine the unique solution of J ′(U) = 0. Now,

J(U + εU) =
1

2

∫
Ω

((U + εU) · ∇E) + Et)
2dxdy +

K

2

∫
Ω
‖∇(u+ εu)‖2+‖∇(v + εv)‖2 dxdy

where U =

(
u
v

)
∈ Z = (H1(Ω))2 and ε > 0.

This gives

J(U + εU) =
1

2

∫
Ω
E2
t + 2Et((U + εU) · ∇E) + (U · ∇E)2 + ε2(U · ∇E)2 + 2ε(U · ∇E)(U · ∇E)

+
K

2

∫
Ω
‖∇u‖2 + ε2‖∇u‖2 + 2ε(∇u·∇u) + ‖∇v‖2 + ε2‖∇v‖2 + 2ε(∇v·∇v)

which implies

J(U + εU)− J(U) =
1

2

∫
Ω

2εEt(U · ∇E) + ε2(U · ∇E)2 + 2ε(U · ∇E)(U · ∇E)

+
K

2

∫
Ω

2ε(∇u·∇u) + 2ε(∇v·∇v) + ε2‖∇u‖2 + ε2‖∇v‖2

So we have

lim
ε→0

J(U + εU)− J(U)

ε
=

∫
Ω

(Et + (U · ∇E))(U · ∇E) +K

∫
Ω

(∇u·∇u) + (∇v·∇v) (3.3)

Now applying integration by parts we get,∫
Ω

(∇u·∇u) = −
∫

Ω
(u∆u) +

∫
∂Ω

(
∂u

∂ν
.u),∫

Ω
(∇v·∇v) = −

∫
Ω

(v∆v) +

∫
∂Ω

(
∂v

∂ν
·v)

If we assume zero Dirichlet or Neumann boundary conditions on the flow velocity U we
have, ∫

∂Ω
(
∂u

∂ν
·u) = 0 =

∫
∂Ω

(
∂v

∂ν
·v)

This gives,

lim
ε→0

J(U + εU)− J(U)

ε
=

∫
Ω

(Et + (U · ∇E))(U · ∇E)−K
∫

Ω
(∆U ·U)

Since U is arbitrary, so J ′(U)(U) = 0 gives the optimality conditions

(Et + U · ∇E)Ex −K∆u = 0

(Et + U · ∇E)Ey −K∆v = 0

}
(3.4)
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which are the required Euler-Lagrange equations for finding the minimum of the functional J .
Equations (3.4) can be written as

−∆u+
E2
x

K
u+

ExEy
K

v = −ExEt
K

−∆v +
ExEy
K

u+
E2
y

K
v = −EyEt

K

In matrix notation we have,
LU +BU = F, (3.5)

where U =

(
u
v

)
, L =

 −∆ 0

0 −∆

 , B = 1
K

 E2
x ExEy

ExEy E2
y

 , F = 1
K

(
−ExEt
−EyEt

)
.

3.3 Existence and uniqueness of solution of J′(U) = 0

We take H = (L2(Ω))2 with the corresponding norm ‖.‖H and Z = (H1(Ω))2 with the corre-
sponding norm ‖.‖Z and ‖.‖L2 represents the usual norm L2(Ω).

3.3.1 Zero Dirichlet boundary condition for velocity

In this case U ∈ (H1
0 (Ω))2.

Theorem 3.3.1. There exists a unique solution for J ′(U) = 0 in H where J is the functional
as in (2.2) and it is assumed that the velocity of the optical flow satisfies zero Dirichlet boundary
condition.

Proof. By (3.5) we have

LU +BU = F

Since L−1 exists by Theorem 3.2.2, this gives us

U = −L−1BU + L−1F

= G(U)

We form the following iteration
Un+1 = G(Un) (3.6)

If we can show that G : H → H is a contraction mapping, then there exists a fixed point U0 of
(3.6) which is also unique. Now

‖G(U1)−G(U2)‖H = ‖L−1B(U1 − U2)‖H

=

∥∥∥∥∥∥
 (−∆)−1E2

x(u1 − u2)

(−∆)−1E2
x(u1 − u2)

∥∥∥∥∥∥
H

As we have assumed U ∈ (H1
0 (Ω))2, it implies

‖(−∆)−1F‖H ≤ C1‖F‖H
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where C1 is a constant depending on F and Ω. Therefore,

‖G(U1)−G(U2)‖H ≤
C1

K

{∥∥E2
x(u1 − u2)

∥∥
L2 +

∥∥E2
y(v1 − v2)

∥∥
L2

}

≤ C1

K

{
‖Ex‖2L∞ ‖(u1 − u2)‖L2 + ‖Ey‖2L∞ ‖(v1 − v2)‖L2

}

≤ C

K
{‖(u1 − u2)‖L2 + ‖(v1 − v2)‖L2} ,where C = max

{
‖Ex‖2L∞ , ‖Ey‖

2
L∞ , C1

}
< ‖U‖H , if K > C

which is true as K is a parameter chosen by us. So G : H → H is a contraction mapping.
Hence, J ′(U) = 0 has a unique solution in H.

We will show later in Section 3.4 that the unique solution obtained above belongs to Z.

3.3.2 Zero Neumann boundary condition for velocity

Next let us assume Neumann boundary condition for the optical flow velocity. In general, it is
not possible to show existence and uniqueness of solution for (3.5). But under certain hypothesis
it can be shown that problem (3.5) has a unique solution.

We write J ′(U)[V ] = 0 ∀V ∈ Z as A(U, V ) = F (V ) where A(U, V ) is a symmetric bi-linear
form on ZÖZ associated to the functional (6.1) and F (V ) is a linear form on Z defined as

A(U, V ) =

∫
Ω

(U · ∇E)(V · ∇E) +K

∫
Ω
∇u1 · ∇v1 +∇u2 · ∇v2 (3.7)

and

F (V ) = −
∫

Ω
Et·(∇E·V ) (3.8)

where U =

(
u1

u2

)
, V =

(
v1

v2

)
.

Theorem 3.3.2. The bi-linear form A(U, V ) as given in (3.7) is continuous ∀ U, V ∈ Z.

Proof.

|A(U, V )| = |
∫

Ω
(U · ∇E)(V · ∇E) +K

∫
Ω

(∇u1·∇v1 +∇u2·∇v2)|

≤ ‖U · ∇E‖L2‖V · ∇E‖L2 +K(‖∇u1‖H‖∇v1‖H + ‖∇u1‖H‖∇u1‖H)

By the inequality,
(a+ b)2 ≤ (a+ b)2 + (a− b)2 = 2(a2 + b2)

we have

‖U · ∇E‖L2 ≤
[
2‖Ex‖2L∞

∫
Ω
u2

1 + 2‖Ey‖2L∞
∫

Ω
u2

2

] 1
2

≤
[
2 max

{
‖Ex‖2L∞ , ‖Ey‖

2
L∞

}] 1
2 ‖U‖H .
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Hence we obtain

|A(U, V )| ≤ C1(‖U‖H‖V ‖H + ‖∇u1‖H‖∇v1‖H + ‖∇u2‖H‖∇v2‖H)

≤ C1[‖U‖2H + ‖∇u1‖2H + ‖∇u2‖2H ]
1
2 .[‖V ‖2H + ‖∇v1‖2H + ‖∇v2‖2H ]

1
2

= C1‖U‖Z .‖V ‖Z

where C1 = 2 max
{

2‖Ex‖2L∞ , 2‖Ey‖2L∞ ,
K
2

}
. Hence A(U, V ) is continuous ∀ U, V ∈ Z

Theorem 3.3.3. The linear form F (V ) as in (3.8) is continuous ∀ V ∈ Z.

Proof.

|F (V )| = |
∫

Ω
Et(V · ∇E|

≤ ‖Et∇E‖H‖V ‖H
≤ ‖Et∇E‖H‖V ‖Z
≤ ‖Et‖H‖∇E‖H‖V ‖Z
= C2‖V ‖Z

where C2 = |Et‖H · ‖∇E‖H . Hence F (V ) is continuous ∀ V ∈ Z

Before trying to determine whether a unique solution of J ′(U) = 0 exists or not, we first
state the Lax-Milgram theorem which will be used in the forthcoming stages.

Theorem 3.3.4 (Lax-Milgram). Let V be a Hilbert space , a(., .) : V × V → R a continuous
and coercive bi-linear form, F (·) : V�R a linear and continuous functional. Then there exists
a unique solution to the problem: find u ∈ V such that

a(u, v) = F (v) ∀v ∈ V

.

Theorem 3.3.5. If A(., .) as in (3.7) is coercive on Z, then A(U, V ) = F (V ) has a unique
solution ∀ V ∈ Z and hence J ′(U)[V ] = 0 ∀V ∈ Z has a unique solution U0 which is the
unique minimizer of the functional J(U) as in (2.2).

Proof. Using Lax-Milgram’s Theorem in Z we get the first part of the theorem. The second part
follows from the fact that A(U, V ) = F (V ) is equivalent to the fact that J ′(U)[V ] = 0 ∀V ∈
Z.

Now we will show that the bi-linear form A(U, V ) is Z−coercive under some given conditions.
Case 1:

First we assume that on a part Ω1 of the boundary Ω, U vanishes, where µ(Ω1) > 0.

Theorem 3.3.6. Under the above hypothesis, the bi-linear form A(U, V ) as in (3.7) is Z−coercive.

Proof. We have,

A(U,U) =

∫
Ω

(U · ∇E)2 +K

∫
Ω

(∇u1)2 + (∇u2)2

≥ K
∫

Ω
(∇u1)2 + (∇u2)2

≥ K‖U‖Z . (By Poincare’s Inequality, see [50])
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The bi-linear form A(U, V ) is coercive and hence A(U, V ) = F (V ) has a unique solution for
all V ∈ Z. This implies that J ′(U)=0 has a unique solution U0 which is the unique minimizer
of the functional J(U) as in (2.2).

Case 2:
In this case we do not assume any condition on the flow velocity across the boundary of Ω.

But we assume Ex and Ey are linearly independent and they are in H1(Ω). We then show the
bi-linear form is coercive.

Theorem 3.3.7. Under the above hypothesis, the bi-linear form A(U, V ) as in (3.7) is Z−coercive.

Proof. The following derivations are based on the work of Horn and Schunck, Nagel and can be
found in [90]. We use the Poincare-Wirtinger’s Inequality[50]∫

Ω
(U − T )2dxdy ≤ D

∫
Ω
|∇U |2dxdy (3.9)

where

T =
1

|Ω|

∫
Ω
Udxdy, |Ω| =

∫
Ω
dxdy = 1 (3.10)

and D is a constant depending on Ω. Suppose A(., .) is not coercive. Then there does not exist
any constant M > 0 such that

A(U,U) ≥M‖U‖2Z .

So for any M > 0 there exists UM ∈ Z such that

A(UM , UM ) < M‖UM‖2Z .

We choose M = 1
n and get a sequence of Mn’s and correspondingly we will get Un. Without

loss of generality we choose ‖Un‖Z = 1. If not, we can take Vn = Un
‖Un‖Z and replace Un with

Vn. So we get a sequence {Un}n∈N in Z with ‖Un‖Z = 1 and A(Un, Un)→ 0 as n→∞.
From (6.11) using the bi-linear form A we have∫

Ω
(un − T 1

n)2dxdy → 0 (3.11)

and ∫
Ω

(vn − T 2
n)2dxdy → 0 for n→∞. (3.12)

where

T 1
n =

1

|Ω|

∫
Ω
undxdy, T

2
n =

1

|Ω|

∫
Ω
vndxdy

As, ∫
Ω

(Exu+ Eyv)2dxdy ≤ 2|E2
x|∞

∫
Ω
u2dxdy + 2|E2

y |∞
∫

Ω
v2dxdy

we have ∫
Ω

[
Ex(un − T 1

n) + Ey(vn − T 2
n)
]2
dxdy → 0 for n→∞. (3.13)
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Now[∫
Ω

(ExT
1
n + EyT

2
n)2dxdy

]1/2

=

[∫
Ω

(Exun + Eyvn + Ex(T 1
n − un) + Ey(T

2
n − vn))2dxdy

]1/2

≤
[∫

Ω
(Exun + Eyvn)2dxdy

]1/2

+

[∫
Ω

(Ex(T 1
n − un) + Ey(T

2
n − vn))2dxdy

]1/2

≤ [A(Un, Un)]
1
2 +

[∫
Ω

(Ex(T 1
n − un) + Ey(T

2
n − vn))2dxdy

]1/2

→ 0 for n→∞ (Using 3.13)
(3.14)

We have

‖p+ q‖2H = ‖p‖2H + ‖q‖2H + 2(p, q)

≥ ‖p‖2H + ‖q‖2H − 2‖p‖H‖q‖H
|(p, q)|
‖p‖H‖q‖H

≥ ‖p‖2H + ‖q‖2H − (‖p‖2H + ‖q‖2H)
|(p, q)|
‖p‖H‖q‖H

= (‖p‖2H + ‖q‖2H){1− |(p, q)|
‖p‖H‖q‖H

}

We take p = ExT
1
n , q = EyT

2
n . So we get∫

Ω
(ExT1n + EyT2n)2dxdy ≥

[
‖Ex‖2H(T1n)2 + ‖Ey‖2H(T2n)2

]
{1− |(Ex, Ey)|

‖Ex‖H‖Ey‖H
} (3.15)

As left hand side of (3.15) goes to zero as n→∞ and by linear independency of Ex and Ey

1− |(Ex, Ey)|
‖Ex‖H‖Ey‖H

> 0

and ‖Ex‖H and ‖Ey‖H are not identically 0, we have

T 1
n → 0 and T 2

n → 0 as n→∞ (3.16)

But this gives a contradiction as,

‖Un‖Z = 1

= ‖(Un − Tn) + Un‖Z
≤ ‖(Un − Tn)‖Z + ‖Tn‖Z → 0 as n→∞(by (3.11), (3.12), (3.16)).

So A(., .) is coercive. Hence J ′(U) = 0 has a unique solution U = U0 in Z

In the Dirichlet case, a unique minimizer of the functional J(U) exists in H(Ω) and in the
Neumann case, a unique minimizer of the functional J(U) exists in Z, provided Ex and Ey are
linearly independent or in some part of ∂Ω there is no velocity flux. But we will now show that
if the minimizer of the functional J , as in (2.2), belongs to H, then it is also in Z. So in both
the cases we have a unique minimizer in Z.

3.4 Estimates for the minimizer

We now derive some estimates for the unique minimizer obtained in the above cases.
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3.4.1 Dirichlet case

Theorem 3.4.1. The unique minimizer of J(U), U = U0 obtained in Theorem 3.3.1 for the
Dirichlet case exists in Z.

Proof. We have seen that U0 satisfies (3.5). Then we have,

(LU0, U0) + (BU0, U0) = (F,U0) (Taking inner product of (3.5) with U0)

This gives
‖∇U0‖2H + (BU0, U0) = (F,U0)

since
(LU0, U0) = −(∆U0, U0)

Using integration by parts and Dirichlet boundary conditions we get,

(LU0, U0) = (∇U0,∇U0)

= ‖∇U0‖2H

Adding ‖U0‖2H on both sides we get,

‖U0‖2H + ‖∇U0‖2H + (BU0, U0) = (F,U0) + ‖U0‖2H (3.17)

Now

sup
‖U0‖H 6=0

|(BU0, U0)|
‖U0‖2H

= ‖B‖

This implies
− (BU0, U0) ≤ ‖B‖‖U0‖2H (3.18)

Therefore equation (3.17) gives

‖U0‖2Z = (F,U0)− (BU0, U0) + ‖U0‖2H
≤ ‖F‖H‖U0‖H + (1 + ‖B‖)‖U0‖2H (Using (3.18))

<∞ since U0 ∈ H1(Ω).

(3.19)

Hence U0 ∈ Z.

We see that for the Dirichlet case also, the unique minimizer U0 ∈ Z. Now we will prove an
estimate for U0 in terms of the image derivatives Ex and Ey.

Theorem 3.4.2. U0 obtained in Theorem 3.3.1 satisfies

‖U0‖Z ≤ C‖Et∇E‖H

where constant C depends on Ω and the smoothing parameter K.

Proof. By (3.17) we have (LU0, U0) + (BU0, U0) = (F,U0) where F = − 1
K (ExEt, EyEt)

t. But
(LU0, U0) = ‖∇U0‖2H and

(BU0, U0) = (

(
E2
x
K

ExEy
K

ExEy
K

E2
y

K

)(
u0

v0

)
,

(
u0

v0

)
)

=
1

K

(
E2
xu0 + ExEyv0

ExEyu0 + E2
yv0

)(
u0

v0

)
=

1

K
(u0Ex + v0Ey)

2 ≥ 0.
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Hence ‖∇U0‖2H ≤ (LU0, U0) ≤ (F,U0). But ‖∇U0‖2H ≥ C(Ω)‖U0‖2Z (By Poincare’s inequality
where C(Ω) > 0 is a constant depending on Ω).

‖U0‖2Z ≤
1

C(Ω)
(F,U0)

≤ 1

C(Ω)
‖F‖H‖U0‖H (By Hölder’s Inequality)

≤ 1

C(Ω)
‖F‖H‖U0‖Z

=
1

KC(Ω)
‖Et∇E‖H‖U0‖Z

Suppose U0 6= 0 identically. Then we have the following estimate

‖U0‖Z ≤
1

E(Ω,K)
‖Et∇E‖H (3.20)

where E(Ω,K) = KC(Ω).

3.4.2 Neumann case

Theorem 3.4.3. U0 obtained in Theorem 3.3.6 and Theorem 3.3.7 satisfies

‖U0‖Z ≤ C‖Et∇E‖H

where constant C depends on Ω and the smoothing parameter K.

Proof. For the Neumann Case we have seen from Theorem 3.3.6 and Theorem 3.3.7 that the
Bi-linear form A(U, V ) is coercive in Z. So there exists a constant D = D(Ω,K) > 0 such that

F (U0) = A(U0, U0) ≥ D(Ω,K)‖U0‖2Z (3.21)

where F (U0) = Et(∇E.U0). Therefore

‖U0‖2Z ≤
1

D(Ω,K)
F (U0)

≤ 1

D(Ω,K)
‖Et∇E‖H‖U0‖H

≤ 1

D(Ω,K)
‖Et∇E‖H‖U0‖Z

Hence the following estimate holds

‖U0‖Z ≤
1

D(Ω,K)
‖Et∇E‖H (3.22)

Comparing the expressions of (3.20) and (3.22), we find that both the estimates are the
same except for the constants E(Ω) and D(Ω,K). Even the constants depend on the domain Ω
and K. So the two estimates for the Dirichlet and the Neumann case are compatible with each
other. Hence we see that U0 depends continuously on the given data i.e the image derivatives.
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3.5 Conclusion

In this chapter, we have determined existence of a unique minimizer for the optical flow func-
tional (2.2). For Dirichlet boundary conditions, showing such an existence was straightforward
whereas for Neumann boundary conditions, some conditions were required to be imposed on the
image sequence E under which a unique minimizer exists. We also derived stability estimates
on the minimizer. We have seen in the previous chapter that the finite difference method of
Horn and Schunck does not recover fluid flows accurately. In the next chapter we propose an
alternate way of tracking fluid flows using the finite element method.
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Chapter 4

Finite Element Method for Optical
Flow Problem

4.1 Introduction

In Chapter 2 we found that the finite difference iterative scheme for computing optical flow
for a given sequence of images gave huge errors. This means that the iterative method fails
to capture the motion of the scalars representing image sequences accurately. A plausible
reason could be that the finite difference approximation to the Laplacian was obtained using a
weighted average of eight neighboring points, leading to inaccurate velocities in directions away
from these neighboring points. Thus there is a need of a suitable method for recovery of fluid
flow using optical flow techniques. In this chapter we shall discuss the performance of finite
element method for determining the fluid flow velocity. We use it to determine the constant
flow as in Chapter 2 and compare the results obtained with the Horn and Schunck method.

4.2 Approximation via the Galerkin method

The weak formulation of a pde set on a domain Ω can be written as: find u ∈ V such that

a(u, v) = F (v) ∀v ∈ V (4.1)

where V is an appropriate Hilbert space, a(, ·, ) : V × V → R is a continuous bi-linear form,
F (·) : V → R is a continuous linear functional. Suppose the bi-linear form a(, ·, ) is coercive.
Then under the above hypotheses the Lax-Milgram theorem(Th.3.3.4) ensures existence and
uniqueness of the solution.
Let Vh be a family of Hilbert spaces that depends on a positive parameter h, s.t.

Vh ⊆ V, dim Vh = Nh <∞, ∀h > 0

The approximate problem is to find uh ∈ Vh such that

a(uh, vh) = F (vh) ∀vh ∈ Vh (4.2)

Such type of approximate problem is called the Galerkin problem. Let us denote with {φj , j =
1, 2, ..., Nh} a basis of Vh. Then it is sufficient that (4.1) be verified for each function of the
basis, as all the functions in Vh can be written as a linear combination of the φj . Then we have,

a(uh, φi) = F (φi), i = 1, 2, ..., Nh (4.3)

As uh ∈ Vh,

uh(x) =

Nh∑
j=1

ujφj(x), x ∈ Ω
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where the uj , j = 1, ...., Nh are the unknown coefficients. The equations (4.3) then become

Nh∑
j=1

uja(φj , φi) = F (φi), i = 1, 2, ..., Nh (4.4)

We denote A by the matrix(called stiffness matrix) with elements

Aij = a(φj , φi)

and by f the vector with components fi = F (φi). If we denote by u the vector having as
components the unknown coefficients , (4.4) is equivalent to the linear system

Au = f (4.5)

We will now show some properties of the matrix A under some given conditions which will
enable us to check for the existence of a unique solution of (4.1).

Theorem 4.2.1. If the bi-linear form a(, ·, ) is coercive then the matrix A associated to the
discretization of (4.1) with the Galerkin method is positive definite.

Proof. A matrix B ∈ Rn×n is said to be positive definite if

vTBv ≥ 0 v ∈ Rn and vTBv = 0 iff v = 0 (4.6)

Let v = (vi) ∈ RNh . We have by the bi-linearity and coercivity of the form a(, ., ),

vTAv =

Nh∑
j=1

Nh∑
i=1

viAijvj

=

Nh∑
j=1

Nh∑
i=1

via(φj , φi)vj

=

Nh∑
j=1

Nh∑
i=1

a(vjφj , viφi)

= a(

Nh∑
j=1

vjφj ,

Nh∑
i=1

viφi)

= a(vh, vh)

≥ α‖vh‖2V ≥ 0.

where vh(x) =

Nh∑
j=1

vjφj(x) ∈ Vh. Moreover, if vTAv = 0 then by what we have just obtained,

‖vh‖2V = 0

⇒ vh = 0

⇒ v = 0

Property 4.2.1. The matrix A is symmetric if and only if the bi-linear form a(, ·, ) is sym-
metric.

Proof. Aij = a(φi, φj) = a(φj , φi) = Aji. Hence A is symmetric if and only if the bi-linear form
a(, ·, ) is symmetric.
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4.3 Analysis of the Galerkin method

In this section we will briefly discuss about three of the fundamental properties of Galerkin
method:

1. Existence and uniqueness of the discrete solution uh.

2. Stability of the discrete solution uh.

3. Convergence of uh to the exact solution u of problem (4.1) for h→ 0.

4.3.1 Existence and uniqueness

The Lax-Milgram theorem (theorem 3.3.4) holds for any Hilbert space ,hence, in particular for
the space Vh. Furthermore the bi-linear form a(, ., ) and the functional F (.) are the same as in
the variational problem (4.1). Thus the hypotheses required by the Lax-Milgram theorem are
fulfilled. The following result can be then derived:

Corollary 4.3.1. If the bi-linear form a(, ., ) is coercive then the solution of the Galerkin
problem (4.2) exists and is unique.

4.3.2 Stability

Corollary 4.3.1 helps us to prove the following stability result.

Corollary 4.3.2. Under the hypotheses of Corollary 4.3.1, the Galerkin method is stable, uni-
formly with respect to h, as the following upper bound holds for the solution

‖uh‖V ≤
1

α
‖F‖V ′

where α is the coercivity constant for the bi-linear form a(, ., ), and ‖F‖V ′ is the norm of the
functional F defined as

‖F‖V ′ = sup
v∈V \{0}

|F (v)|
‖v‖V

Proof. If uh is almost everywhere equal to zero we are done, else we have by the coercivity of
the bi-linear form a(, ., )

α‖uh‖2V ≤ a(uh, uh) = F (uh) ≤ |F (uh)|

Again as F is linear and continuous, we have

|F (uh)| ≤ ‖F‖V ′‖uh‖V

Hence the result.

The stability of the method guarantees that the norm‖uh‖V of the discrete solution remains
bounded for h tending to zero, uniformly with respect to h.

4.3.3 Convergence

We now want to prove that the weak solution of (4.2) converges to the solution of the problem
(4.1) when h tends to zero. Consequently,by taking a sufficiently small h, it will be possible to
approximate the exact solution u as accurately as desired by the Galerkin solution uh. We first
prove the following consistency property
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Lemma 4.3.1 (Céa). The Galerkin method is strongly consistent, that is

a(u− uh, vh) = 0 ∀vh ∈ Vh (4.7)

Proof. Since Vh ⊆ V , the exact solution u satisfies the weak problem (4.1) for each element
v = vh ∈ Vh, hence we have

a(u, uh) = F (vh) ∀vh ∈ Vh. (4.8)

By subtracting side to side (4.2) from (4.8), we obtain

a(u, vh)− a(uh, vh) = 0 ∀vh ∈ Vh.

from which, thanks to the bi-linearity of the form a(, ., ), (4.7) follows.

Next we prove a theorem regarding the error committed when the approximate solution uh
is taken instead of the exact solution u.

Theorem 4.3.1. If u and uh denote the solutions of (4.1) and (4.2) respectively, then we have

‖u− uh‖V ≤
M

α
inf

wh∈Vh
‖u− vh‖V (4.9)

where M and α are the constants of continuity and coercivity respectively for the bi-linear form
a(, ., ).

Proof. If vh is an arbitrary element of Vh we obtain

a(u− uh, u− uh) = a(u− uh, u− vh) + a(u− uh, vh − uh).

The last term is null thanks to (4.7), as vh − uh ∈ Vh. Moreover

|a(u− uh, u− vh)| ≤M‖u− uh‖V ‖u− vh‖V

by exploiting the continuity of the bi-linear form. On the other hand, by the coercivity of a(, ·, )
it follows

a(u− uh, u− uh) ≥ α‖u− uh‖2V
hence we have

‖u− uh‖V ≤
M

α
‖u− vh‖V ∀vh ∈ Vh

Such inequality holds for all functions vh ∈ Vh and therefore we find

‖u− uh‖V ≤
M

α
inf

vh∈Vh
‖u− vh‖V (4.10)

It is then evident that in order for the method to converge, it will be sufficient to require
that, for h tending to zero, the space Vh tends to �fill�the entire space V . Precisely it must
turn out that

lim
h→0

inf
vh∈Vh

‖v − vh‖V = 0 ∀v ∈ V (4.11)

The above property is also known as the density property. In that case, the Galerkin method
is convergent and it can be written that

lim
h→0
‖u− uh‖V = 0

The space Vh must therefore be carefully chosen in order to guarantee the density property
(4.11). Once this requirement is satisfied, convergence will be verified in any case, independently
of how u is made; conversely it will be seen later that the speed with which the discrete solution
converges to the exact solution will depend, in general, on both the choice of Vh and the
regularity of u. In the following section we will try to achieve specifically the above objective.
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4.4 The finite element method

Let Ω be a bounded domain in Rn. The goal of this section is to create approximations of the
space H1(Ω) that depend on a parameter h.

Definition 4.4.1. A finite element is a triple (K,
∑
, P ) such that

1. K ⊆ Ω with a Lipschitz continuous boundary ∂K and interior of K is non-empty.

2.
∑

is a finite set of linear forms over C∞(K). The set
∑

is said to be the set of degrees
of freedom of the finite element.

3. P is a finite dimensional space of real-valued functions over K such that
∑

is P−uni-
solvent i.e if

∑
= {φi}Ni=1 and αi, 1 ≤ i ≤ N are any scalars, then there exists a unique

function p ∈ P such that
φi(p) = αi 1 ≤ i ≤ N (4.12)

(4.12) of Definition (4.4.1) is equivalent to the conditions that dim P = N = cardinality of∑
and that there exists a set of functions {pj}Nj=1 with φi(pj) = δij(1 ≤ i, j ≤ N) which forms

a basis of P over R. Given any p ∈ P we may write

p =

N∑
i=1

φi(p)pi (4.13)

4.4.1 Examples of finite elements

We will now give some examples of finite elements which will be used in the optical flow prob-
lem.But before that we define the following

Definition 4.4.2. An n-simplex is the convex hull in Rn of (n+ 1) points {aj}n+1
j=1 such that if

aj = {akj}nk=1 and A is the matrix

A =


a11 a12 · · · a1,n+1

a21 a22 · · · a2,n+1
...

...
. . .

...
an1 an2 · · · an,n+1

1 1 1 1


then det(A) 6= 0

Definition 4.4.3. Let k ≥ 0 be an integer. Then, Pk is the space of all polynomials of degree
≤ k in x1, x2, ...., xn

i.e.

Pk = {p(x1, x2, ..., xn) =
∑

i1,i2,..,in≥0,i1+i2+..+in≤k
ai1i2..inx

i1
i1
xi2i2 ..x

in
in

with ai1i2..in ∈ R}

.

Example 4.4.1 (The n-simplex of Type 1). Let K be an n-simplex. Let Pk = P1. We define a
set
∑

= {p(ai); 1 ≤ i ≤ n+ 1} of degrees of freedom for p ∈ Pk, where {ai}n+1
i=1 are the vertices

of K. The set
∑

determines every polynomial p ∈ Pk uniquely. Hence (K,
∑
, Pk) is a finite

element of Type 1.
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Example 4.4.2 (The n-simplex of Type 2). Let K be an n-simplex with vertices {ai}n+1
i=1 . Let

aij(i < j) be the mid-points of the line joining ai and aj i.e.aij = 1
2(ai + aj). Let Pk = P2. We

define for p ∈ P2, the set
∑

= {p(ai), 1 ≤ i ≤ n + 1; p(aij), 1 ≤ i < j ≤ n + 1}. Then
∑

determines p ∈ P2 completely. Hence (K,
∑
, Pk) is a finite element of Type 2

Similarly we could use n-simplices of Type r to get other forms of finite elements using Pr.
We saw in the above examples that the set of degrees of freedom for a finite element K(which

could be a triangle in 2-d or cube in 3-d) has the following types:

Type 1: φ0
i given by p 7→ p(a0

i ). The points {a0
i } were the vertices, the mid-points of sides,etc.

Type 2: φ1
i,k given by p 7→ Dp(a1

i )(ξ
1
i,k) where {a1

i } are the vertices of the finite element K and

Dp(a1
i ) is the total derivative of p at the point (a1

i ).

Type 3: φ2
i,kl given p 7→ D2p(a2

i )(ξ
2
i,k, ξ

2
i,1) where {a2

i } are the vertices of the finite element K and

D2p(a2
i ) is the second derivative of p at the point (a1

i ).

In all the above cases {asi} for s = 0, 1, 2 are points of K and are called the nodes of the finite
element.

Definition 4.4.4. A finite element is called a Lagrange finite element if its degrees of freedom
are only of Type 1. Otherwise it is called a Hermite finite element.

As said before that our aim was to create approximations of the space H1(Ω), Vh which
depend on a parameter h. We will use the finite elements in the above given examples to create
the approximate spaces Vh. But before that we need simple inclusions such as Vh ⊂ H1(Ω) or
Vh ⊂ H1

0 (Ω). We will establish a simple criterion to realize this.

Theorem 4.4.1. Let ζh be a finite triangulation of Ω such that Ω =
⋃
K∈ζh

K where the sets K

are the finite elements. If for every K ∈ ζh, Pk ⊂ H1(K) and Vh ⊂ C0(Ω), then Vh ⊂ H1(Ω).
If in addition v = 0 on ∂Ω for all v ∈ Vh, then Vh ⊂ H1

0 (Ω).

Proof. Let v ∈ Vh. Since v|K ∈ L2(K) for every K ∈ ζh it follows that v ∈ L2(Ω). Hence to
complete the proof it only remains to show that for 1 ≤ i ≤ n, there exist vi ∈ L2(Ω) such that
for each φ ∈ D(Ω) we have, ∫

Ω
φvidx = −

∫
Ω

∂φ

∂xi
vdx (4.14)

Then it will follow that ∂v
∂xi

= vi and hence v ∈ H1(Ω).

However, v|K ∈ Pk ⊂ H1(K) implies that ∂v|K
∂xi
∈ L2(K), 1 ≤ i ≤ n. Let φ ∈ D(Ω). Since

the boundary ∂K of any K of the triangulation is Lipschitz continuous, we apply integration
by parts to get ∫

K

∂v|K
∂xi

φdx = −
∫
K

(v|K)
∂φ

∂xi
dx+

∫
∂K

(v|K)φνi,KdνK

where dνK is the measure on ∂K and ν = (ν1,K , ...., νn,K) is the outer normal on ∂K Summing
over all the finite elements K, we get∫

Ω
φvidx =

∑
K∈ζh

∫
K
φ
∂v|K
∂xi

dx

= −
∫

Ω

∂φ

∂xi
vdx+

∑
K∈ζh

∫
∂K

(v|K)φνi,KdνK

where vi is the function whose restriction to each K is ∂v|K
∂xi

.

43



The summation on the right-hand side of the above equation is zero for the following reasons:
On the boundary ∂Ω, since φ ∈ D(Ω), the integral corresponding to ∂K∩∂Ω is zero. So the

problem, if any, is only on the other portion of the boundary of each K. However, these always
occur as common boundaries of adjacent finite elements. The value of v|K on the common
boundary of two adjacent finite elements is the same (Vh ⊂ C0(Ω)). But the outer normals are
equal and opposite from orientation considerations.

Hence the contributions from each K along the common boundaries cancel one another.
Thus the summation yields only zero. Hence vi satisfies (4.14) for 1 ≤ i ≤ n, and clearly
vi ∈ L2(Ω). The last part of the theorem follows from the characterization of H1

0 (Ω) spaces.

4.4.2 Finite element spaces

Now that we have obtained the above inclusions we proceed to give examples of some finite
element spaces which approximate the space H1(Ω) or H1

0 (Ω). Before that we consider some
assumptions on the triangulation ζh of the domain Ω. The h parameter is related to the spacing
of the triangulation. We set hK = diam(K) for each K ∈ ζh, where diam(K) = max

x,y∈K
|x − y|

is the diameter of the element K. Now we define h = max
K∈ζh

hK . Moreover, we will impose the

requirement that the triangulation satisfy the following regularity condition. Let ρK be the
diameter of the circle inscribed in the triangle K (also called the sphericity of K); a family of
triangulations {ζh, h > 0} is said to be regular if, for a suitable δ > 0, the condition

hK
ρK
≤ δ ∀K ∈ ζh (4.15)

is verified. This condition instantly excludes highly deformed triangles. Henceforth we will be
using such regular grids.

Now we consider the following family of spaces

Xr
h = {vh ∈ C0(Ω) : vh|K ∈ Pr ∀K ∈ ζh}, r = 1, 2, ... (4.16)

having denoted by Pr the space of polynomials with degree lower than or equal to r in all the
variables. The spaces Xr

h are all subspaces of H1(Ω) as they are constituted by differentiable
functions except for at most a finite number of points(the vertices xi of the triangulation ζh).
They represent possible choices for the space Vh, provided that the boundary conditions are
properly incorporated. The fact that the functions of Xr

h are locally(element-wise) polynomials
will make the stiffness matrix A in (4.5) easy to compute.

To make the stiffness matrix a sparse matrix, we usually choose a basis {φi} for the Xr
h space

such that the support of each {φi} have non-empty intersection only with that of a negligible
number of other functions in the basis. It is also convenient that the basis be Lagrangian: in
that case, the coefficients of the expansion of a generic function vh ∈ Xr

h on the basis itself will
be the values taken by vh in carefully chosen points, which we call nodes and which might form
a superset of the vertices of ζh.

We can also define another kind of finite element spaces for rectangular finite elements of
type r as described in Section 4.4

Xr
h = {vh ∈ C0(Ω) : vh|K ∈ Qr ∀K ∈ ζh}, r = 1, 2, ... (4.17)

having denoted by Qr the space of polynomials with degree lower than or equal to r in each
variable. The spaces Xr

h are also subspaces of H1(Ω) as they are constituted by differentiable
functions except for at most a finite number of points(the vertices of the rectangulation ζh). We
again choose a Lagrangian basis for the space so that our stiffness matrix is a sparse matrix.
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4.5 Interpolation Theory

In the previous section we have outlined the internal approximation method for H1(Ω). We are
naturally interested in the convergence of the solution uh ∈ Vh to the global solution u ∈ H1(Ω).
As a key step in this analysis we obtained the error estimate (4.10)

‖u− uh‖H1 ≤
M

α
inf

vh∈Vh
‖u− vh‖H1

Let v ∈ C0(Ω). We now define interpolant of v in the space of X1
h determined by the triangula-

tion ζh as the function Π1
hv such that Π1

hv(Ni) = v(Ni) for each node Ni of ζh for i = 1, 2, ..., Nh.
If {φi} is the Lagrangian basis of the space X1

h, then

Π1
hv(x) =

Nh∑
i=1

v(Ni)φi(x)

The operator Π1
h : C0(Ω) → X1

h, associating a continuous function v to its interpolant Π1
hv is

called interpolation operator.
Analogously we can define an operator Πr

h : C0(Ω) → Xr
h, for each integer r ≥ 1. Having

denoted by Πr
K , the local interpolation operator associated to a continuous function v the

polynomial Πr
Kv ∈ Pr(K), interpolating v in the degrees of freedom of the element K ∈ ζh, we

define
Πr
hv ∈ Xr

h : Πr
h|K = Πr

K(v|K) ∀K ∈ ζh
From (4.10) we get

‖u− uh‖H1(Ω) ≤
M

α
inf

vh∈Vh
‖u− vh‖H1(Ω)

=
M

α

∑
K∈ζh

‖u−Πr
h|K‖2H1(K)

 1
2 (4.18)

Thus the problem of estimating ‖u − uh‖H1(Ω) is reduced to the problem of estimating
‖u−Πr

h|K‖H1(K). We will now state the the interpolation error estimates and an estimate for
the error ‖u− uh‖H1(Ω). The proofs can be found in [80]. To prove these estimates, regularity

of the triangulation is used as well as affine and invertible transformation FK : K̂ → K between
the reference triangle K̂ and the generic triangle K (see Fig 4.1) is used. Such a map is defined
by FK(x̂) = BK x̂+ bK , BK ∈ R2×2, bK ∈ R2, and it satisfies the relation FK(K̂) = K.

Figure 4.1: The map FK between the reference triangle K̂ and the generic triangle K [80]
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Theorem 4.5.1 (Global estimate for the interpolation error). Let {ζh}h>0 be a family of regular
grids of the domain Ω and let m = 0, 1 and r ≥ 0. Then there exists a constant C = C(r,m,K̂)>
0 such that

|v −Πr
hv|Hm(Ω) ≤ C

∑
K∈τh

h
2(r+1−m)
K |v|2Hr+1(K)

 1
2

∀v ∈ Hr+1(Ω)

In particular we obtain

|v −Πr
hv|Hm(Ω) ≤ Chr+1−m|v|Hr+1(Ω) ∀v ∈ Hr+1(Ω)

Theorem 4.5.2 (Error estimate for the finite element solution). Let u ∈ V be the exact solution
of the variational problem (1) and uh be its approximate solution using the finite element method
of degree r. If u ∈ Hr+1(Ω), then the following a priori error estimate hold

‖u− uh‖H1(Ω) ≤
M

α
C
(
ΣK∈τhh

2r
K |u|2Hr+1(K)

) 1
2

‖u− uh‖H1(Ω) ≤
M

α
Chr|u|Hr+1(Ω)

C is a constant independent of h and u.

4.6 Finite element method for the Optical flow problem (2.2)

Now that we have the required pre-requisites, we will solve the optical flow problem (6.1) using
the finite element method. We showed in Theorem 3.2.2 that minimizing the functional J is
equivalent to finding a solution of J ′(U) = 0. We also showed in Section 3.3.2 that we can write
J ′(U)[V ] = 0 ∀V ∈ Z as A(U, V ) = F (V ) where A(U, V ) : Z×Z → R is a symmetric bi-linear
form associated to the functional J given by (3.7) and F (V ) : Z → R is a linear form given by
(3.8). The approximate problem can be written as: find Uh ∈ Zh such that

A(Uh, Vh) = F (Vh) ∀Vh ∈ Zh
where Zh is a suitable approximation of the space Z depending on a parameter h. In the finite
element setup, the optical flow problem can be formulated as: find Uh ∈ Zh such that∫

Ω
(∇E·Uh)(∇E·Vh) +K

∫
Ω

(∇Uh·∇Vh) = −
∫

Ω
Et(∇E·Vh) ∀Vh ∈ Zh

We take the approximation of the space Z as the space Zh = (X1
h)2 and use Type 1 rect-

angular finite elements. The characteristic Lagrangian basis functions are characterized by the
following property Φi ∈ Zh such that Φi(xj) = δij , i, j = 0, 1, ..., Nh where Nh are the number of
nodes and δij being the Kronecker delta. The function Φi is therefore piecewise linear in each
coordinate, as we have rectangular finite elements, and equal to one at each xi and zero at the
remaining nodes of the triangulation.

4.6.1 Data

Our domain Ω is the unit square in R2 i.e. [0, 1]Ö[0, 1]. We have taken our image at time t0 to
be E0 defined as

E0(x, y) = E(x, y, 0) = e[−50∗{(x−0.5)2+(y−0.5)2}]

The exact solution is chosen to be the constant velocity (u, v) = (1, 1). At time t, the image
will be given by,

E(x, y, t) = E0(x− ut, y − vt) = E(x− ut, y − vt, 0)

using the characteristic method. We use the Neumann boundary conditions which are natural
boundary conditions.
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4.6.2 Programming procedure

We use deal.II libraries in C++ programming language to solve the problem. We refine the
domain Ω uniformly three times i.e in the first step we divide Ω into four equal cells. In the
second step we divide each of the four cells into equal four cells and so on uptil three times. So
the total number of active cells will be 64. Then the degrees of freedom in the refined grid are
calculated and we now form the stiffness matrix A and the right hand side f as in (4.5) and
hence the linear equation

AU = f, U ∈ T. (4.19)

It will be a sparse matrix. It is invertible under the conditions for Neumann boundary conditions
in Chapter 3 as the associated bi-linear form is coercive (Theorem 4.2.1). Then the linear system
in (4.19) is solved using the conjugate gradient method (See Appendix C ). A preconditioner
is also used to improve on the condition number of the matrix A.

4.6.3 Results

With Neumann boundary conditions, Fig 4.2 and Fig 4.3 shows the velocity vector plots for
K = 0.9, 1.5

Figure 4.2: Image along with the velocity vectors for K = 0.9.

Figure 4.3: Image along with the velocity vectors for K = 1.5.

We can see that we recover the velocity with great accuracy. This is also reflected in Table
4.1 through the relative L2 errors. We changed the smoothing parameter K and calculated the
relative L2 error in the velocity and the advection error. The results are shown in Table 4.1
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K Relative L2 Error Advection Error

0.1 5.5502 e-13 9.57645 e-26
0.2 1.35063 e-13 6.84743 e-27
0.3 2.2402 e-13 3.27 e-26
0.9 1.59248 e-13 1.62616 e-27
1 2.21603 e-13 3.56386 e-28

1.1 2.22272 e-13 3.58421 e-28
1.2 2.65804 e-13 5.19862 e-28
1.8 3.47395 e-13 4.95675 e-28
1.9 3.67301e-13 6.14862 e-28
2 4.06641 e-13 8.57827 e-28

Table 4.1: Variation of relative L2 error and Advection error with the smoothing parameter K

(a) K small (b) K large

Figure 4.4: Graph of L2 error vs K.

4.6.4 Conclusions

The order of the advection error is 10−28 and the order of the L2 error is 10−13 which suggests
that the optical flow velocities obtained using the finite element method satisfy the advection
equation and are very close to the actual velocity. Figure 4.4 shows the graph plots of relative
L2 error versus K showing the excellent recovery of the constant flow. So we see that the finite
element method is better than the finite difference method in the recovery of fluid flows. So we
now proceed to the next chapter to solve the cloud motion problem emulating the optical flow
techniques that have been tested uptil now.
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Chapter 5

Finite Element method for the
Potential flow problem

5.1 Introduction

In this chapter, our aim is to recover incompressible fluid flows. This leads to the inclusion of
fluid flow constraints in our model.We assume that the fluid flow is potential and incompressible.
We will solve it numerically using the finite element method and test it on constant flows and
point vortex flows and formulate a minimization problem. Numerical experiments are performed
on constant flows and point vortex flows using finite element method and finally the results are
analysed.

5.2 Constraints

Let E be a brightness pattern. We will again assume that brightness of a particular point in
the pattern is constant,so

dE

dt
= 0

This implies E satisfies
Exu+ Eyv + Et = 0 (5.1)

Let U = (u, v) be the optical flow velocity. Then by our assumption on the flow

U = ∇Φ

∆Φ = 0
(5.2)

Now to solve for Φ we have to give a boundary condition on it and the natural choice would
be to specify the normal rate of change of flux on the boundary. The condition can be written
as

∇Φ·n = g (5.3)

where g is some arbitrary function and n is the unit normal on the boundary of Ω. If U belongs
to Z = (H1(Ω))2 then g belongs to H

1
2 (∂Ω). Our aim is to determine a suitable g so that

U satisfies (5.1), (5.2) and (5.3). Now to solve for Φ from (5.2) and (5.3) we have another
constraint to be satisfied i.e ∫

∂Ω
g = 0 (5.4)

We will now modify the HS functional (6.1) and try to solve the problem incorporating the
above constraints.
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5.3 Problem Statement

Let E : ΩÖR+ −→ R, be an image sequence, where Ω ⊆ R2 is a bounded domain of the spatial
coordinates and R+ is the domain of the time coordinate. We estimate the optical flow, the
field U ∈ H1(Ω) of optical velocities over Ω, by minimizing the functional,

J(U) =
1

2

∫
Ω

(Et +∇E·U)2 +
K

2

∫
∂Ω
g2 (5.5)

subject to the constraints (5.2), (5.3) and (5.4), where K is a positive constant.
There are two terms in the functional. The first term comes as a result of the fact that

brightness of a particular point in the image pattern is constant. The second term is added to
have a control over the normal rate of change of optical flow flux on the boundary.

5.4 Optimization using Lagrange Multipliers

The functional J is to be minimized subject to PDE constraints. This is done by the use of
Lagrange multipliers [46]. We first write down the weak form of (5.2). Multiplying (5.2) with a
test function ψ ∈ H1(Ω), integrating by parts and using the boundary condition (5.3), we get∫

∂Ω
gψdν −

∫
Ω
∇Φ·∇ψdxdy = 0 (5.6)

Hence to determine the optimal solution, the auxiliary functional can be written as

J̃(Φ, ψ, λ, g) =
1

2

∫
Ω

(Et +∇E·∇Φ)2dxdy +
K

2

∫
∂Ω
g2dν +

∫
∂Ω
gψdν −

∫
Ω
∇Φ·∇ψdxdy + λ

∫
∂Ω
g,

(5.7)
where ψ ∈ H1(Ω) is the Lagrange multiplier corresponding to the constraint (5.2) and (5.3) and
λ ∈ R is the Lagrange multiplier for the constraint (5.4).

5.5 Optimality conditions obtained after minimization of J̃

Taking the Gateaux derivative of J̃ in (5.7) wrt ψ,Φ, λ, g, the standard optimality conditions
[100] are

∂J̃

∂ψ
= 0,

∂J̃

∂Φ
= 0,

∂J̃

∂λ
= 0,

∂J̃

∂g
= 0. (5.8)

The first equation in (5.8) gives the weak PDE satisfied by Φ∫
∂Ω
gψ̃dν −

∫
Ω
∇Φ·∇ψ̃dxdy = 0, ψ̃ ∈ H1(Ω) (5.9)

The second equation in (5.8) gives the weak PDE satisfied by ψ

−
∫

Ω
∇ψ·∇Φ̃ +

∫
Ω

(Et +∇E·∇Φ)(∇E·∇Φ̃) = 0, ∀Φ̃ ∈ H1(Ω) (5.10)

The third equation in (5.8) gives the compatibility condition∫
∂Ω
g = 0 (5.11)

The final equation in (5.8) gives the optimality condition∫
∂Ω

(Kg + ψ + λ)g̃ = 0, ∀g̃ ∈ H
1
2 (∂Ω) (5.12)
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(5.12) gives us
Kg + ψ + λ = 0, on ∂Ω. (5.13)

This implies ∫
∂Ω

(Kg + ψ + λ)dν = 0

Using (5.11) we get

λ

∫
∂Ω
dν = −

∫
∂Ω
ψdν

This gives

λ = −
∫
∂Ω ψdν∫
∂Ω dν

Therefore we get

g =
1

K

(
−ψ +

∫
∂Ω ψdν∫
∂Ω dν

)
on ∂Ω. (5.14)

5.6 Finite Element Method

Now that we have got the equations (5.9), (5.10), (5.11), (5.12), (5.14), we will solve them using
finite element method to recover the optical flow velocity for a given image pattern. We use
Freefem++ software to achieve this objective. But first we will write down the original space
Z where we are trying to find the solution, the approximate space Zh depending on parameter
h and the weak formulations for Φ, ψ in the space Zh.

Our domain Ω is the unit square in R2. We take Z = (H1(Ω))2 and the approximation of
the space Z as the space Zh = (X1

h)2 where X1
h is the space defined in (4.16).

The weak formulation for ψ is

−
∫

Ω
∇ψ·∇ψh +

∫
Ω

(Et +∇E·∇Φ)(∇E·∇ψh) = 0, ∀ψh ∈ X1
h(Ω) (5.15)

The weak formulation for Φ is∫
∂Ω
gΦh −

∫
Ω
∇Φ·∇Φh = 0, ∀Φh ∈ X1

h(Ω) (5.16)

5.7 Image Data

We have taken our image at time t0 to be E0 defined as:-

E0(x, y) = E(x, y, 0) = e[−50∗{(x−0.5)2+(y−0.5)2}]

and for testing the accuracy of the method we move the image with a predefined constant
velocity of u = 1.0 and v = 1.0. So at time t, the image will be given by,

E(x, y, t) = E0(x− ut, y − vt) = E(x− ut, y − vt, 0)

using the characteristic method.
We define the relative L2 error in velocity as

Relative L2 error =
‖Ue − Uo‖
‖Ue‖

(5.17)

and the advection error as

Advection Error = ‖Et + Uo · ∇E‖ (5.18)

where Ue is the exact velocity and Uo is the obtained velocity and the norm ‖ · ‖ is the usual
L2 norm for vector functions.
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Figure 5.1: Mesh

5.8 Numerical Algorithm

The steps for solving the problem are enumerated below

1. We divide Ω into triangular finite elements.

2. We then give an arbitrary starting value of g and solve for Φ using its weak formulation.
We note while solving for Φ we are using Neumann boundary conditions and so the solution
is unique upto a constant. To remove ambiguity arising from the constants we modify the
weak formulation for Φ as∫

∂Ω
gΦh −

∫
Ω
∇Φ·∇Φh − ε

∫
Ω

ΦΦh = 0, ∀Φh ∈ X1
h(Ω)

where ε = 10−10. So unless Φ is of order 1
ε we satisfy (5.11) and also the solution obtained

is unique and it is almost equal to the solution obtained from (5.16).

3. After we get Φ, we substitute it in (5.15) and solve for ψ.

4. We then modify g using (5.14).

5. Now we check the L2 error of the difference of the modified g and the previous value of g.
If the difference is less than a given value of tolerance, then we have obtained the solution
Φ and hence the flow velocity U = (∂x(Φ), ∂y(Φ)) else we use the modified value of g to
again solve for Φ, ψ and then repeat the procedure.

5.9 Numerical Results

We divide Ω into triangles as seen in Fig 5.1. The image E is shown in Fig 5.2. Figure 5.3
shows the velocity vector plots for various values of K. We note that for K = 1 the magnitude
of the velocity vectors are too high which suggests that K = 1 is not a good choice. But for
K = 1.1, 1.5, 1.75, 2 we see that the average magnitude is near to 0.5 and it decreases as we
increase K. Table 5.1 shows the relative L2 errors and the advection errors for different values
of K. Our tolerance level is set at 10−10. We can see from above table that if K ≤ 1 then the
method does not converge at all. But even if we increase K then the method converges but as
we increase K the relative L2 error increases, not rapidly. But the advection error decreases as
K ≥ 1.1 even though the order of the error is 10−5. Also time taken to compile is proportional to
K. So to have a balance between the control of L2 error and the advection error we would want
to choose K such that the L2 error is the minimum as the order of the L2 error is much greater
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Figure 5.2: Image E

(a) K=1 (b) K=1.5

(c) K=1.75 (d) K=2

Figure 5.3: Velocity plots for constant flow
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K Time taken/ Relative L2 error Advection error Method Convergence

Number of steps Status

0.8 315 steps - - No
1 315 steps - - No

1.01 315 steps - - No
1.06 315 steps - - No
1.08 315 steps - - No
1.09 315 steps - - No
1.1 850.45 sec 0.530761 8.53735 e-5 Yes
1.2 47.375 sec 0.550122 8.16886 e-5 Yes
1.5 13.24 sec 0.599979 7.23131 e-5 Yes
1.75 9.23 sec 0.633987 6.599943 e-5 Yes

2 7.31 sec 0.662754 6.06881 e-5 Yes
3 4.33 sec 0.743681 4.59114 e-5 Yes

Table 5.1: Variation of relative L2 error and advection error with the smoothing parameter K

than the advection error.The results suggest that the optical flow velocity could be sensitive to
K. Smaller values of K cannot be taken. Too higher values of K might over-regularize the flow
velocity. So there exists an optimal value of K for which the relative L2 error is the minimum.
This is shown in Figure 5.4 From the above results we have an intuitive feeling that the optical
flow velocity might depend on K. So we try for another example where the above given image
E is subject to a point vortex.

5.10 Flow due to point vortex

We consider the same domain and the same image E. We now introduce a point vortex of
strength κ = 100.0, whose singularity lies at the point (−1,−1) i.e. outside the domain. The
velocity components are given as

u = − κ(y + 1)

2π [(x+ 1)2 + (y + 1)2]

v =
κ(x+ 1)

2π [(x+ 1)2 + (y + 1)2]

(5.19)

To test the method, we move the image E with the velocity U = (u, v) according to the advection
equation Et + U · ∇E = 0 and then we will recover the velocity U . The results obtained are
shown in Figure 5.5

5.11 Numerical Results

We see a similar trend as we had got for the case of constant flow. We note that for K = 1
the magnitude of the velocity vectors are too high which suggests that K = 1 is not a good
choice. But for K = 1.1, 1.2, 1.4, 1.8, 2, 2.5, 3 we see that the average magnitude is near to 1 and
it decreases as we increase K. Table 5.2 shows the relative L2 errors for different values of K.
Our tolerance level in this case is set at 10−7. We can see from above table that if K ≤ 1 then
the method does not converge at all. But even if we increase K then the method converges but
as we increase K the relative L2 error increases, not rapidly. Again the time taken to compile
is proportional to K. So we would want to choose K such that the L2 error is the minimum.
As in both the cases of constant flow and point vortex flow, we see the same behavior of the
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Figure 5.4: Graph of Relative L2 error vs K showing existence of an optimal K

(a) K=0.8 (b) K=1.4

(c) K=2 (d) K=3

Figure 5.5: Velocity plots for flow due to point vortex
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K Time taken/ Relative L2 error Advection Error Method Convergence

Number of steps Status

0.8 315 steps - - No
1 315 steps - - No

1.04 315 steps - - No
1.08 315 steps - - No
1.1 869.78 sec 0.562607 Yes
1.2 42.79 sec 0.580036 4.81059 e-4 Yes
1.4 16.3 sec 0.611268 4.36944 e-4 Yes
1.8 8.3 sec 0.662055 3.70100 e-4 Yes
2 6.87 sec 0.682904 3.44042 e-4 Yes

2.5 5.06 sec 0.725437 2.92845 e-4 Yes
3 4.28 sec 0.75802 2.55113 e-4 Yes

Table 5.2: Variation of relative L2 error with the smoothing parameter K for vortex flow.

Figure 5.6: Graph of Relative L2 error vs K showing existence of an optimal K for vortex flow.

flow velocity with K we can now predict that for this method we have an universal optimal K
which would minimize the L2 error in the flow velocity. We again plot a graph to see which
could be the optimal K. This is shown in Figure 5.6. We compare the two graphs Graph 5.4
and Graph 5.6 and we find that the optimal K lies between 1.1 and 1.2 and for both the cases
values are almost equal.

5.12 Conclusions

We formulated a constraint-based minimization problem to recover incompressible flows given
a sequence of images of scalars. Additionally, it was assumed that the flow was irrotational and
hence it can be given by the potential of some function φ. To introduce boundary conditions
in the problem, a Neumann boundary condition for the velocity potential was incorporated in
the model and put as a control in the minimization problem. The numerical results show that
the relative L2 error in the velocity depends on K and there exists an optimal K for which

56



the relative L2 error is the least. A mathematical theory to determine the convergence of the
method with respect to K and determining the optimal K would be an interesting problem
which the authors plan to address in future. But as the L2 error in the velocity is of the order
0.5, it suggests that the above method is not that accurate in recovering incompressible flows.
One plausible reason could be the boundary condition. The Neumann boundary condition for
the velocity potential transforms to the normal component of the velocity on the boundary.
There is no information of the tangential velocity component and hence the flow is not well
recovered. Hence there is a need to propose a different model for recovering incompressible
flows. One way of doing this is to include it as a constraint and, using the boundary velocity
information, try and recover the velocity. This method is employed in the next chapter.
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Chapter 6

Steady State Flow Recovery

6.1 Introduction

In the previous chapter we found that the recovery of constant optical flow velocities was not
accurate assuming potential and incompressible flow constraints. Therefore, in this chapter, we
propose an alternate algorithm based on variational methods to recover the optical velocities for
flow governed by Stokes and Navier-Stokes equations. We formulate a minimization problem
and determine conditions under which unique solution exists. Numerical results using finite
element method not only support theoretical results but also show that Stokes flow forced by a
potential are recovered almost exactly.

6.2 Variational Formulation

To estimate fluid flow, we trace passive scalars that are propagated by the flow. Examples
of such scalars are smoke, brightness patterns of dense rain-bearing clouds whose intensity
remains constant atleast for a short time span. These scalars can be represented by a function
E : Ω × R+ −→ R so that E(x, y, t) for (x, y) ∈ Ω represents a snapshot of the image of the
scalars at time t ∈ R+. Here Ω is a bounded convex subset of R2. Let us assume our image
E(x, y, t) ∈W 1,∞(Ω), for each t and hence in L2(Ω) (as Ω is bounded). Let the field of optical
velocities over Ω at a fixed time t = t0 be U(x, y, t0) = (u, v)(x, y, t0) and X = (H1(Ω))2. Then
U ∈ X is obtained by minimizing the functional,

J(U) =
1

2

∫
Ω

(Et + U · ∇E)2dxdy +
K

2

∫
Ω
‖∇U‖2dxdy, K > 0 (6.1)

where Et and ∇E are evaluated at t = t0, and

‖∇U‖2 = ‖∇u‖2 + ‖∇v‖2

Without loss of generality let t0 = 0. The first term in (6.1) represents the constant brightness
assumption of the tracers. The second term represents a regularization term for the flow ve-
locities. Such a functional was first considered by Horn and Schunck[49] and subsequently by
many others [14, 13, 65, 66, 67, 68] to efficiently estimate rigid body motion. Here it is used to
track the underlying fluid flow motion. Such a connection between optical flow and fluid flow
tracking is essential because if a proper connection is found then techniques from optical flow
to determine high-resolution velocity fields from various images in continuous patterns can be
used. To use (6.1) to track fluid flows, we need to include fluid dynamics and enforce proper
boundary conditions. Hence we enforce the incompressible fluid flow constraint

∇ · U = 0 (6.2)
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So the minimization problem can be stated as

min
U∈X

{J(U)| ∇ · U = 0} (P)

The boundary conditions on the flow velocity could be either Dirichlet or Neumann.

6.3 Existence and Uniqueness Of Minimizer

We show existence of a unique global minimizer for Problem (P). Before that we state some
standard definitions and results.

6.3.1 Preliminary Results

Let (Z, ‖ · ‖Z) be a Banach space.

Theorem 6.3.1. Let J : Z → R∪{−∞,∞} be a convex functional on Z. If J is bounded from
above in a neighborhood of a point U0 ∈ Z, then it is locally bounded i.e. each U ∈ Z has a
neighborhood on which J is bounded.

Definition 6.3.1. A functional J defined on Z is said to be locally Lipschitz if at each U ∈ Z
there exists a neighborhood Nε(U) and a constant R(U) such that if V,W ∈ Nε(U), then

|J(V )− J(W )| ≤ R‖V −W‖Z

If this inequality holds throughout a set Y ⊆ Z with R independent of U then we say that J is
Lipschitz on Y .

Theorem 6.3.2. Let J be convex on Z. If J is bounded from above in a neighborhood of one
point of X, then J is locally Lipschitz in Z.

Theorem 6.3.3. Let J be convex on Z. If J is bounded from above in an neighborhood of one
point of Z, then J is continuous on Z.

Theorem 6.3.1, 6.3.2, 6.3.3 and Definition 6.3.1 can be found in [82]. The following theorem
from [15] is used to establish a unique global minimizer for (P).

Theorem 6.3.4 (Existence and uniqueness of global minimizer). Let J : Z → R ∪ {−∞,∞}
be a lower semi-continuous strictly convex functional. Also let J be coercive i.e.

lim
‖U‖Z→+∞

J(U) =∞.

Let C be a closed and convex subset of Z. Then J has a unique global minimum over C.

Let us now verify the conditions stated in Theorem (6.3.4) for the functional J in (6.1).
Let H = L2(Ω), H1 = (L2(Ω))2 and Z = X with norms ‖U‖H = ‖u‖L2 + ‖v‖L2 and ‖U‖Z =
‖u‖H1 + ‖v‖H1 .

Theorem 6.3.5. The functional given in (6.1) is strictly convex with respect to U under the
assumption that Ex and Ey are linearly independent i.e there does not exist non-zero constants
c1 and c2 such that c1Ex(x, y) + c2Ey(x, y) = 0, for all (x, y) ∈ Ω .
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Proof. Let U1 =

(
u1

v1

)
and U2 =

(
u2

v2

)
where (·) is the usual inner product on R2. Then

for 0 < α < 1 and U1 6= U2, we have

J(αU1 + (1− α)U2) =
1

2

∫
Ω

((αU1 + (1− α)U2) · ∇E) + Et)
2dxdy

+
K

2

∫
Ω

[
‖∇(αu1 + (1− α)u2)‖2+‖∇(αv1 + (1− α)v2)‖2

]
dxdy

≤ 1

2

∫
Ω

[
{(αU1 + (1− α)U2) · ∇E}2 + 2E2

t + 2Et{(αU1 + (1− α)U2) · ∇E}
]
dxdy

+
K

2

∫
Ω

[
‖(α∇u1 + (1− α)∇u2)‖2 + ‖(α∇v1 + (1− α)∇v2)‖2

]
dxdy

Now

K

2

∫
Ω

[
‖(α∇u1 + (1− α)∇u2)‖2 + ‖(α∇v1 + (1− α)∇v2)‖2

]
dxdy

≤K
2

(
α

∫
Ω

[
‖∇u1‖2 + ‖∇v1‖2

]
dxdy + (1− α)

∫
Ω

[
‖∇u2‖2 + ‖∇v2‖2

]
dxdy

) (6.3)

and ∫
Ω

[(αU1 + (1− α)U2) · ∇E]2 dxdy ≤ α
∫

Ω
(U1 · ∇E)2dxdy

+(1− α)

∫
Ω

(U2 · ∇E)2dxdy.

(6.4)

Equality holds in (6.3) iff
∇u1 = ∇u2, ∇v1 = ∇v2 (6.5)

and in (6.4) iff
U1 · ∇E = U2 · ∇E. (6.6)

From (6.5) we have
u1 − u2 = c1, v1 − v2 = c2 (6.7)

where c1 and c2 are constants. From (6.6) we get

Ex(u1 − u2) + Ey(v1 − v2) = 0. (6.8)

But as Ex and Ey are linearly independent, (6.7) and (6.8) gives

u1 = u2, v1 = v2

which implies
U1 = U2.

Hence for U1 6= U2 we have,∫
Ω

((αU1 + (1− α)U2) · ∇E)2dxdy < α

∫
Ω

(U1 · ∇E)2dxdy + (1− α)

∫
Ω

(U2 · ∇E)2dxdy.

This gives
J(αU1 + (1− α)U2) < αJ(U1) + (1− α)J(U2), 0 < α < 1. (6.9)

This implies that J is a strictly convex functional w.r.t U .

Theorem 6.3.6. The constraint set (6.2) given as C = {U ∈ Z : ∇·U = 0} is a closed subspace
of Z.
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Proof. For U1, U2 ∈ C we have

∇ · (αU1 + βU2) = α(∇ · U1) + β(∇ · U2) ∀α, β ∈ R.

Hence
αU1 + βU2 ∈ C, α, β ∈ R.

Now consider a sequence {Un}n ∈ C such that it converges to U in ‖.‖Z . We need to show that
U ∈ C. Since Un → U in C, we have Un → U in Z and ∇ · Un = 0. Now Un → U in Z gives
Un → U in H1 and ∇Un → ∇U in H1. This implies ∇·Un → ∇·U in H1 which in turn implies
∇ · (Un − U) → 0 in H1. Finally writing ∇ · U = ∇ · (U − Un) +∇ · Un we see that ∇ · U → 0
as n→∞. This shows that U ∈ C and so C is a closed subspace of Z and hence convex.

Thus J is a strict convex function defined on H and the constraint set (6.2) denoted as K
is a closed subspace of Z. We now show that J is continuous and coercive.

Theorem 6.3.7. The functional J as given in (6.1) is continuous

Proof. We will use the Theorem 6.3.3 to prove our statement. We assume

‖E‖W 1,∞(Ω) ≤M.

As 0 ∈ Z, we consider a neighborhood of zero given as N1 = {U : ‖U‖Z < 1}. Now

|J(U)| =
∣∣∣∣12
∫

Ω
(U · ∇E + Et)

2 dxdy +
K

2

∫
Ω

[
‖∇u‖2 + ‖∇v‖2

]
dxdy

∣∣∣∣
≤ 1

2

∫
Ω

(U · ∇E + Et)
2 dxdy +

K

2
‖U‖2Z

≤ 1

2

∫
Ω

(
E2
t + (U · ∇E)2 + 2Et(U · ∇E)

)
dxdy +

K

2
‖U‖2Z

Using Hölder’s inequality and L∞ bound on E and its derivatives we get

|J(U)| ≤ 1

2

∫
Ω

[
M2 +M2(u+ v)2

]
dxdy

+ 2M

(∫
Ω

(∇E)2

)1/2(∫
Ω
U2

)1/2

dxdy +
K

2
‖U‖2Z

≤ M2

2

∫
Ω

[
1 + 2(u2 + v2)

]
dxdy +M(

∫
Ω
M2)1/2‖U‖Z +

K

2
‖U‖2Z

≤ M2

2
(

∫
Ω

1) +M2‖U‖2Z +M2(

∫
Ω

1) +
K

2
‖U‖2Z

<
3M

2
µ(Ω) +M2 +

K

2
( as ‖U‖Z < 1)

<∞.

where µ(Ω) is the measure of Ω. This gives us J(U) is bounded above in N1. As J is convex
(by Theorem 6.3.5), it implies J is continuous for all U ∈ Z (by Theorem 6.3.3).

Theorem 6.3.8. The functional J as given in (6.1) is coercive under the assumption that Ex
and Ey are linearly independent.

Proof. The functional J in (6.1) can be written as

J(U) = J1(U) +

∫
Ω
{E2

t + 2Et(U · ∇E)}dxdy
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where

J1(U) =

∫
Ω

(U · ∇E)2dxdy +
K

2

∫
Ω
‖∇U‖2dxdy. (6.10)

To show J(U) is coercive we need to show J1(U) is coercive as it is quadratic in U . We use the
Poincare-Wirtinger’s Inequality∫

Ω
(U − T )2dxdy ≤ D

∫
Ω
‖∇U‖2dxdy (6.11)

where

T =
1

µ(Ω)

∫
Ω
Udxdy (6.12)

and D is a constant depending on Ω. Suppose J1 is not coercive. Then there does not exist any
constant M > 0 such that

J1(U) ≥M‖U‖2Z ∀U ∈ Z

because if it was so then J1 →∞ as ‖U‖Z →∞. So for any M > 0 there exists UM ∈ Z such
that

J1(UM ) < M‖UM‖2Z .

We choose M = 1
n and get a sequence of Mn’s and correspondingly get Un. Without loss of

generality, let us assume ‖Un‖Z = 1. If not, we can take Vn = Un
‖Un‖Z and replace Un with Vn.

So we get a sequence {Un}n∈N in Z with ‖Un‖Z = 1 and J1(Un) → 0 as n → ∞. Using (6.10)
and (6.11) we have ∫

Ω
(un − T 1

n)2dxdy → 0 (6.13)

and ∫
Ω

(vn − T 2
n)2dxdy → 0 for n→∞. (6.14)

where

T 1
n =

1

µ(Ω)

∫
Ω
undxdy, T 2

n =
1

µ(Ω)

∫
Ω
vndxdy.

As ∫
Ω

(Exu+ Eyv)2dxdy ≤ 2|E2
x|∞

∫
Ω
u2dxdy + 2|E2

y |∞
∫

Ω
v2dxdy

we have ∫
Ω

(
Ex(un − T 1

n) + Ey(vn − T 2
n)
)2
dxdy → 0 as n→∞. (6.15)

Now(∫
Ω

(ExT
1
n + EyT

2
n)2dxdy

)1/2

=

(∫
Ω

(Exun + Eyvn + Ex(T 1
n − un) + Ey(T

2
n − vn))2dxdy

)1/2

≤
(∫

Ω
(Exun + Eyvn)2dxdy

)1/2

+

(∫
Ω

(Ex(T 1
n − un) + Ey(T

2
n − vn))2dxdy

)1/2

≤ (J1(Un))1/2 +

(∫
Ω

(Ex(T 1
n − un) + Ey(T

2
n − vn))2dxdy

)1/2

→ 0 for n→∞. (Using (6.15))
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Let a = ExT
1
n , b = EyT

2
n . Then

‖a+ b‖2H = ‖a‖2H + ‖b‖2H + 2(a, b)H

≥ ‖a‖2H + ‖b‖2H − 2‖a‖H‖b‖H
|(a, b)|H
‖a‖H‖b‖H

≥ ‖a‖2H + ‖b‖2H − (‖a‖2H + ‖b‖2H)
|(a, b)|H
‖a‖H‖b‖H

= (‖a‖2H + ‖b‖2H){1− |(a, b)|H
‖a‖H‖b‖H

}

where (a, b)H is the usual inner product in H. So we get∫
Ω

(ExT
1
n + EyT

2
n)2dxdy ≥

(
‖Ex‖2H(T 1

n)2 + ‖Ey‖2H(T 2
n)2
)
{1− |(Ex, Ey)|H

‖Ex‖H‖Ey‖H
}. (6.16)

As left hand side of (6.16) → 0 as n→∞ and by linear independency of Ex and Ey

1− |(Ex, Ey)|H
‖Ex‖H‖Ey‖H

> 0

and since ‖Ex‖H and ‖Ey‖H are not identically 0, we have

T 1
n → 0 and T 2

n → 0 as n→∞ (6.17)

But this gives a contradiction as ‖Un‖Z ≤ ‖(Un−Tn)‖Z+‖Tn‖Z and hence ‖Un‖Z → 0 as n→∞
(using (6.13),(6.14),(6.17)). So J1 is coercive and hence J is coercive.

By Theorem 6.3.4, the problem (P) has a unique global minimum.

6.4 Exact recovery of Stokes flow

We now write down the optimality conditions for the minimizer of (P). Using Lagrange multi-
pliers, the auxiliary functional can be written as

J̃(U, p) =
1

2

∫
Ω

(Et + U · ∇E)2 dxdy +
K

2

∫
Ω
‖∇U‖2 dxdy +

∫
Ω

(∇ · U)p dxdy

Taking Gateaux derivative of J̃ wrt U and p, the standard optimality conditions [100] are

∂J̃

∂U
= 0 and

∂J̃

∂p
= 0. (6.18)

The first equation in (6.18) gives∫
Ω

(Et + (U · ∇E))(U · ∇E) +K

∫
Ω

(∇u·∇u) + (∇v·∇v)+

∫
Ω

(∇ · U)p = 0,

∀ U ∈ Z
(6.19)

with prescribed Dirichlet boundary conditions

U = Ub on ∂Ω. (6.20)

The second equation in (6.18) gives∫
Ω

(∇ · U)p = 0 ∀p ∈ L2(Ω) (6.21)
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Performing an integration by parts on the second term on the left in (6.19) and taking U to be
an arbitrary function in Z, together with (6.21) the following PDE is obtained

K∆U −∇p = −(Et + U · ∇E)∇E
∇ · U = 0

(6.22)

subject to (6.20).

Theorem 6.4.1. Let E in the right hand side of (6.22) be advected with velocity Ue i.e.

Et + Ue · ∇E = 0

with Ue satisfying (6.20) and incompressible Stokes equation

α∆Ue +∇q = f, α > 0

∇ · Ue = 0.
(6.23)

If f is given by a potential f = ∇φ for smooth φ, then U = Ue is the only solution of (6.22)
which is independent of any K > 0. In other words the flow is recovered exactly irrespective of
K.

Proof. Eq. (6.22) can rewritten as

α∆U − α

K
∇p = − α

K
(Et + U · ∇E)∇E (6.24)

Since f = ∇φ, Eq. (6.23) can be rewritten as

α∆Ue +∇(q + φ) = 0

As the image E is advected with velocity, Ue is a solution of Eq. (6.24) with p = −K
α (q + φ)

and right hand side as zero. As the solution of (6.22) is unique, U = Ue is the unique solution
of (6.22) which is independent of any K > 0.

The result of Theorem 6.4.1 is verified in the numerical examples in Section 6.6 where we
have considered incompressible Stokes flow under various boundary conditions and find that
the flow is recovered with a high precision. Also as Navier-Stokes flow at low Reynolds number
represents Stokes flow, we recover low Reynolds number Navier-Stokes flow accurately.

6.5 Finite element method for the Optical flow problem (6.1)

Eq. (6.22) is solved using the finite element method. Combining equations (6.19) and (6.21)
along with the boundary conditions (6.20) gives the weak formulation of the PDE to be solved
to determine the minimizer. Let Th be a triangulation of domain Ω and let K be a triangle in
Th. Let Zh and Xh be two finite element spaces with triangulation parameter h such that

Zh ⊂ Z, Xh ⊂ L2(Ω)

Then the discrete problem is to find (Uh, ph) ∈ (Zh ∩ Zb)×Xh such that∫
Ω

(Et + (Uh · ∇E))(∇E·Uh) +K

∫
Ω

(∇uh·∇uh) + (∇vh·∇vh) +

∫
Ω

(∇ · Uh)ph = 0∫
Ω

(∇ · Uh)ph = 0

(6.25)
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where (Uh, ph) ∈ Zh ×Xh.
Let us define the following Taylor-Hood finite element spaces

Zh(Ω) = {Uh ∈ (C0(Ω))2 : Uh|K is a polynomial of degree 2 and Uh = 0 on ∂Ω} (6.26)

and
Xh(Ω) = {ph ∈ C0(Ω) : ph|K is a polynomial of degree 1} (6.27)

which satisfy the LBB condition [38]. We now describe the procedure to determine E,Et and
∇E.

6.5.1 Image data

Our aim is to generate a sequence of synthetic images E and try to recover the velocity given
the information of the derivatives of E. For this purpose E is chosen whose analytic expression
is known at time t = 0 and hence its gradients can be computed exactly. To advect E with
velocity Ue exactly, Et at t = 0 is generated from the equation

Et(x, y, 0) = −Ue · ∇E(x, y, 0)

where Ue represents the velocity obtained by solving incompressible Stokes flow

∆U +∇p = f

∇ · U = 0
(6.28)

or Navier-Stokes flow
−α∆U+(U · ∇)U +∇p = f,

∇ · U = 0
(6.29)

using finite element method with appropriate boundary conditions, where α = 1/Re and Re
is the Reynolds number. In practice, derivatives of images will be computed using some finite
differences which will introduce errors in the computed velocity.

6.5.2 Test Flows

Two types of flows are considered: one in a lid-driven cavity and the other past a cylinder. For
flows in a lid-driven cavity, the domain is Ω = [0, 1]Ö[0, 1]. The boundary conditions are

U =

{
(1, 0) on y = 1
(0, 0) elsewhere

(6.30)

with image at time t0 defined as

E0(x, y) = E(x, y, 0) = e−50[(x−1/2)2+(y−1/2)2]
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Figure 6.2: Image at time t = 0

Figure 6.1: Image at time t = 0

For flows past a cylinder, the domain Ω is a rectangle in R2 given as [0, 2.2]× [0, 0.41] with
a closed disk inside it centered at (0.2, 0.2) and radius 0.05. The boundary conditions are

U =

{
(0, 0) on y = 0, y = 0.41 and on the surface of the disk

(0, 6y(0.41−y)
0.412

) on x = 0
(6.31)

with image at time t0 defined as

E0(x, y) = E(x, y, 0) = e−50[(x−1.1)2+(y−0.2)2]

To compute Ue, Eq. (6.28) or (6.29) is solved subject to the boundary conditions given in
(6.30) or (6.31). But exact analytic expressions of solutions to (6.28) or (6.29) with the specified
boundary conditions are usually not known. So finite element method is used to obtain Ue.

6.5.3 Mesh

For flows in a lid-driven cavity, the domain Ω = [0, 1]× [0, 1] is triangulated with 100 points on
each side as shown in Figure 6.3. There are 20000 triangles with 10201 degrees of freedom. For
flows past a cylinder, the mesh used is shown in Figure 6.4. It comprises of 200 points on the
longer boundary, 80 points on the shorter boundary and 100 points on the circular boundary.
There are 28582 triangles with 14605 degrees of freedom.
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(a) Full Mesh (b) Zoomed View

Figure 6.3: Mesh for the lid-driven cavity flows. Figure 6.4a shows the full domain with the
mesh. Figure 6.4b shows a zoomed view of the triangulation

(a) Full Mesh (b) Zoomed View

Figure 6.4: Mesh for the lid-driven cavity flows. Figure 6.4a shows the full domain with the
mesh. Figure 6.4b shows a zoomed view of the triangulation near the inner circular boundary
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6.5.4 Solving the Stokes equation

To solve (6.28), let us write the weak formulation as: find U ∈ Zb = {U ∈ Z : U = Ub on ∂Ω}
and p ∈ L2(Ω) such that∫

Ω
∇U · ∇V +

∫
Ω

(∇ · V )p+

∫
Ω

(∇ · U)q +

∫
Ω
f · V = 0 ∀(V, q) ∈ Z × L2(Ω) (6.32)

We also fix the value of p to be zero at a point X0 ∈ ∂Ω to obtain uniqueness. The discrete
problem is to find (Uh, ph) ∈ (Zh ∩ Zb)×Xh such that∫

Ω
∇Uh · ∇Vh −

∫
Ω

(∇ · Vh)ph −
∫

Ω
(∇ · Uh)qh =

∫
Ω
f · Vh ∀(Vh, qh) ∈ Zh ×Xh (6.33)

where Zh and Xh are defined in (6.26) and (6.27) respectively. Solving Eq. 6.33 with domains,
boundary conditions and meshes defined in Sections 6.5.2 and 6.5.3 gives Ue.

6.5.5 Solving the Navier-Stokes equation

Equation (6.29) is a non-linear equation in U . So the method of Picard iteration, which is
an easy way of handling nonlinear PDEs, is used. In this method, a previous solution in the
nonlinear terms is used so that these terms become linear in the unknown U . The strategy is
also known as the method of successive substitutions [52]. In our case, we seek a new solution
Uk+1 in iteration k + 1 such that (Uk+1, pk+1) solves the linear problem

−α∆Uk+1+(Uk · ∇)Uk+1 +∇pk+1 = f,

∇ · Uk+1 = 0
(6.34)

with given boundary conditions, where Uk is known. The variational formulation for (6.34) can
be written as: find Uk+1 ∈ Zb = {U ∈ Z : U = Ub on ∂Ω} and pk+1 ∈ L2(Ω) such that∫

Ω
α∇Uk+1 · ∇V +

∫
Ω

[
(Uk · ∇)Uk+1

]
· V −

∫
Ω

(∇ · V )pk+1 −
∫

Ω
(∇ · Uk+1)q

−
∫

Ω
f · V = 0 ∀(V, q) ∈ Z × L2(Ω)

(6.35)

We start with initial guess U0 = (0, 0) and employ the finite element method as described in
Section (6.5.4) to determine Uk+1. Finally, we stop at the k + 1th stage if ‖Uk+1 − Uk‖ < ε.
We choose ε = 10−7. Hence we have Ue = Uk+1.
Finally, the relative L2 error in velocity is defined as

Relative L2 error =
‖Ue − Uo‖
‖Ue‖

(6.36)

and the advection error is defined as

Advection Error = ‖Et + Uo · ∇E‖ (6.37)

where Ue is the exact velocity and Uo is the obtained velocity and the norm ‖ · ‖ is the usual
L2 norm for vector functions as defined earlier.

6.6 Numerical Examples

6.6.1 Stokes Flow in a lid driven cavity

The exact flow is given by solving (6.28) with f = (1, 100) in lid-driven cavity. Figure (6.5)
shows plots of velocity vectors for various K. The velocity is recovered with a very high degree
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(a) Exact (b) K=0.001

(c) K=5 (d) K=35

Figure 6.5: Velocity plots for Stokes flow in a lid driven cavity

of accuracy. This is also reflected in the relative L2 errors given in Table (6.1). Also Table
(6.1) shows that the advection errors are very small and so the recovered velocity preserves
the advection properties of the image. The streamline plots for the velocity given in Figures
(6.6) shows that large vortex in the center and the two small vortices at the bottom corners
are detected with good accuracy which is actually very important in atmospheric flows. It is
notable that the regularization parameter K has minimal effect on the behavior of the solutions
which is consistent with the fact that it is not a physical parameter and hence any positive
value of K can be used to determine the velocity. This perfectly justifies the result proved in
Theorem 6.4.1.

6.6.2 Stokes flow past a cylinder

The exact flow is given by solving (6.28) as a flow past a cylinder with f = (1, 100). Figure (6.7)
shows plots of velocity vectors for various K. Again the velocity is recovered with a very high
degree of accuracy. Table (6.2) shows the relative L2 errors and the advection errors, which are
quite small, justifying good recovery of flows. The streamline plots for the velocity is given in
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(a) Exact (b) K=0.001

(c) K=5 (d) K=35

Figure 6.6: Streamline plots for Stokes flow in a lid driven cavity

K Relative L2 Error Advection Error

0.001 4.55e-08 9.62e-26
5 4.56e-08 6.83e-27

110 4.49e-08 2.51e-27
300 4.48e-08 4.11e-27
600 4.42e-08 3.57e-28

Table 6.1: Variation of relative L2 error and advection error with K for Stokes flow in a lid
driven cavity
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(a) Exact (b) K=0.001

(c) K=5 (d) K=35

Figure 6.7: Velocity plots for Stokes flow past a cylinder

(a) Exact (b) K=0.001

(c) K=5 (d) K=35

Figure 6.8: Streamline plots for Stokes flow past a cylinder

Figure (6.8). As with the case of Stokes flow in a lid driven cavity, there is no dependence of
the obtained solutions on K.

6.6.3 Navier-Stokes flow in a lid driven cavity for Re = 1 and 1000

Here we consider motion governed by Navier-Stokes flows for Re = 1 and 1000. The exact flow is
given by solving (6.29) with f = (1, 100) in a lid-driven cavity. Figures (6.9) and (6.11) show the
velocity vector plots for Re = 1 and Re = 1000 respectively. The plots show good recovery for
Re = 1, whereas for Re = 1000 the relative L2 error is on the higher side. This is also reflected
in Tables (6.3) and (6.4). The streamline plots given by Figures (6.10), (6.12) show that for
lower Reynolds number flows the vortices are well recovered whereas for higher Reynolds number
flows the vortices are recovered though not to a greater degree of accuracy. Tables (6.3) and
(6.4) suggests that the advection error for lower Reynolds number flows is very low compared
to higher Reynolds number flows. This is because at low Reynolds number, Navier-Stokes flows
represents Stokes flows and hence they are recovered well. For higher Reynolds number flows,
the non-linear convection term dominates and so a very good flow recovery is not possible with
our linear model. However we note that even for higher Reynolds number flows, the solution
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K Relative L2 Error Advection Error

0.001 1.44e-8 3.76e-28
5 1.53e-8 6.43e-27

110 1.47e-8 6.69e-28
300 1.42e-8 5.25e-28
600 1.69e-8 5.32e-28

Table 6.2: Variation of relative L2 error and advection error with K for Stokes flow past a
cylinder

K Relative L2 Error Advection Error

0.001 3.56e-4 2.7e-11
5 3.61e-4 2.8e-11

110 3.44e-4 3.1e-11
300 3.48e-4 2.9e-11
600 3.4e-4 2.6e-11

Table 6.3: Variation of relative L2 error and advection error with K for Navier-Stokes flow in
a lid driven cavity for Re = 1

obtained is independent of K.

6.6.4 Navier-Stokes flow past a cylinder.

The exact flow is given by solving (6.29) as a flow past a cylinder with f = (1, 100). Figures
(6.13) and (6.15) show the velocity vector plots for Re = 1 and Re = 1000 respectively. The
plots show good recovery for Re = 1, whereas for Re = 1000 the relative L2 error is on the
higher side which is also reflected in Tables (6.5) and (6.6). The streamline plots given by
Figures (6.14) and (6.16) show that vortices for low Reynolds number flows are captured well
whereas for higher Reynolds number flows, the vortices behind the cylinder are not captured.
This suggests there is a need to include extra assumptions in our model for high Reynolds
number flows.

6.7 Conclusion

A variational technique for tracking instantaneous motion from flow images using the well-
known OFM has been formulated. In the present work, these flow images have been generated by
numerically solving the 2D incompressible Stokes equation (6.28) or the Navier-Stokes equations
(6.29) for Re = 1 and 1000. Incompressibility is the only constraint imposed in the variational

K Relative L2 Error Advection Error

0.001 5.81e-1 2.8e-8
5 5.95e-1 3.6e-8

110 6.12e-1 4.1e-8
300 6.07e-1 2.5e-8
600 5.86e-1 5.2e-8

Table 6.4: Variation of relative L2 error and advection error with K for Navier-Stokes flow in
a lid driven cavity for Re = 1000
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(a) Exact (b) K=0.001

(c) K=5 (d) K=35

Figure 6.9: Velocity plots for Navier-Stokes flow in a lid driven cavity for Re = 1

K Relative L2 Error Advection Error

0.001 1.01e-4 2.0e-11
5 1.11e-4 2.0e-11

110 1.24e-4 2.1e-11
300 1.15e-4 2.5e-11
600 1.08e-4 2.6e-11

Table 6.5: Variation of relative L2 error and advection error with K for Navier-Stokes flow past
a cylinder for Re = 1
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(a) Exact (b) K=0.001

(c) K=5 (d) K=35

Figure 6.10: Streamline plots for Navier-Stokes flow in a lid driven cavity for Re = 1

K Relative L2 Error Advection Error

0.001 7.23e-1 4.3e-8
5 6.56e-1 4.6e-8

110 6.12e-1 4.6e-8
300 6.33e-1 4.5e-8
600 6.86e-1 4.7e-8

Table 6.6: Variation of relative L2 error and advection error with K for Navier-Stokes flow past
a cylinder for Re = 1000
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(a) Exact (b) K=0.001

(c) K=5 (d) K=35

Figure 6.11: Velocity plots for Navier-Stokes flow in a lid driven cavity for Re = 1000
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(a) Exact (b) K=0.001

(c) K=5 (d) K=35

Figure 6.12: Streamline plots for Navier-Stokes flow in a lid driven cavity for Re = 1000

(a) Exact (b) K=0.001

(c) K=5 (d) K=35

Figure 6.13: Velocity plots for Navier-Stokes flow past a cylinder for Re = 1
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(a) Exact (b) K=0.001

(c) K=5 (d) K=35

Figure 6.14: Streamline plots for Navier-Stokes flow past a cylinder for Re = 1

(a) Exact (b) K=0.001

(c) K=5 (d) K=35

Figure 6.15: Velocity plots for Navier-Stokes flow past a cylinder for Re = 1000

(a) Exact (b) K=0.001

(c) K=5 (d) K=35

Figure 6.16: Streamline plots for Navier-Stokes flow past a cylinder for Re = 1000
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formulation. Using FEM in the present variational approach method, it is shown that the
velocities are recovered almost exactly for Stokes flow forced by potential. For Navier-Stokes
flow the method performs very well for Re = 1 compared to Re = 1000. This is because
Stokes flow is a linearized version of the Navier-Stokes flow for low Reynolds number. But
nevertheless, in both the cases the physical features of fluid flow like vortex structures are
captured well. This is particularly attractive for the cloud motion problem. The simplicity of
our variational approach makes it computationally attractive. In the next chapter, we extend
this variational approach to track high Reynolds number flows as well by including non-linear
effects.
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Chapter 7

Time Dependent Flow Recovery

7.1 Introduction

In the previous chapter, we had used a variational approach by minimizing a functional with
data given at a fixed time t to recover incompressible flows. We found out that even though the
method was efficient and recovered Stokes flow exactly, it fails to recover vortex structures for
high Reynolds number flows. As a consequence, in this chapter, we formulate a minimization
problem by penalizing the tracking or advection error over space and time. Hence we also
consider time integrals. We use the vorticity-streamfunction formulation for the Euler and
Navier-Stokes equations. This is because our main aim is to capture vortex structures and
vorticity can be directly obtained as an output rather than computing the curl of the velocity
which could lead to numerical errors. We present three kind of formulations based on the
Helmholtz decomposition of the velocity vector field, use a space-time discontinuous Galerkin
finite element method and numerically investigate the motion due to vortex flows satisfying
Euler and Navier-Stokes equations at high Reynolds number.

7.2 Variational Formulation

To estimate fluid flow, passive scalars propagated by the flow are traced. Examples of such
scalars are smoke and brightness patterns of dense rain-bearing clouds whose intensity remains
constant atleast for a short time span. These scalars can be represented by a function E :
Ω× R+ −→ R so that E(x, y, t) for (x, y) ∈ Ω represents snapshots of the image of the scalars
at various times t ∈ R+. Here Ω is a bounded convex subset of R2. We assume our image
E(x, y, t) ∈W 1,∞(Ω), for each t and hence in L2(Ω) (as Ω is bounded). The constant brightness
assumption of the tracers gives us the optical flow equation

∂E

∂t
+ Ũ · ∇E = 0 (7.1)

where Ũ(x, t) is the optical velocity i.e, the velocity of the fluid which propagates the scalars
in the images. Estimating fluid motion of E is the inverse problem of determining Ũ from the
image sequence represented by E. To estimate fluid flow, we need to include flow dynamics as
constraints. We assume Ũ satisfies the 2D incompressible Euler (Navier-Stokes) equations i.e
the vorticity ω = ∇× Ũ satisfies

ωt + Ũ · ∇ω = 0 (
1

Re
∆ω), (x, t) ∈ Ω× (0, T ]

ω(x, 0) = ω0(x), x ∈ Ω
(7.2)

where Re is the Reynolds number. We also impose the boundary condition

ω = 0, x ∈ ∂Ω− (∂Ω for Navier-Stokes)
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where ∂Ω− is the inflow boundary

∂Ω− = {x ∈ ∂Ω: Ũ · n < 0} (7.3)

where n is the unit normal on the boundary of Ω. We assume that all vortex stay in the interior
of the domain at all times t ∈ [0, T ]. Again, as ∇ · Ũ = 0, ∃ ψ : Ω × R+ −→ R, called
streamfunction, such that

Ũ(x, t) = ∇⊥ψ(x, t).

Hence ψ is governed by
−∆ψ = ω in Ω. (7.4)

For solving (7.4), we impose the boundary condition

∂ψ

∂n
= g(x, t) on ∂Ω ∀t ∈ [0, T ]. (7.5)

For uniqueness, ψ is chosen to satisfy∫
Ω
ψ = 0 ∀t ∈ [0, T ]. (7.6)

We assume ω0 ∈ L∞(Ω) and g(·, t) ∈ H−1/2(∂Ω) ∀t ∈ [0, T ]. Given E, our aim is to determine
appropriate g and ω0 so that (7.2), (7.3), (7.4), (7.5), (7.6) can be solved to determine Ũ. Such
a pair (g, ω0) can be obtained by minimizing the functional

J(ψ(ω0, g), ω0, g) =
1

2

∫
Q

(Et +∇⊥ψ.∇E)2 +
α2

2

∫ T

0

∫
∂Ω
|g|2 +

β2

2

∫
Ω
|ω0|2 (7.7)

where α and β are regularization parameters and Q = (0, T ) × Ω. The minimization problem
can be stated as

min
(ω0,g)

{J(ω0, g) : (7.2)− (7.6) is satisfied.} (P)

We consider three different formulations. In the first case, a linearized version of (7.2) is
considered where the total velocity is a perturbation of a known flow which is constant. The
motivation for such an assumption originates from the Helmholtz decomposition of the velocity
vector field. Since we are dealing with vortex based flows, our aim is to capture vortex structures
well. So splitting up the velocity field into its translational and rotational part with known
translational components enables us to capture vortex structures well. This is also demonstrated
in the numerical examples. At the theoretical level, we also show existence of a unique velocity
field which is very important from the computational perspective. In the second case, we again
consider a linearized version of (7.2) where the total velocity is a perturbation of an unknown
constant velocity. This in principle is the Helmholtz decomposition with both the translational
and rotational part unknown. From the numerical test cases in Section 7.7, it can be seen that
vortex properties are recovered well. Finally, we consider the general case when the total non-
linear velocity is unknown. Since there is no extra assumption on the properties on the velocity
field, we are unable to show existence of a unique velocity field which leads to a not so good
recovery of vortex structures. This is expected as the flow dynamics does not include rotational
properties and without prior information of the boundary conditions and initial vorticity, it
poses a major challenge in recovery of vortex based flows.

7.3 Formulation 1 - Linearized Flow

We assume

Ũ = U0 + U
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where U0 is a known constant and U is assumed to be small relative to U0. Linearizing (7.2)
about U0 and combining (7.4), (7.6) we get

ωt + U0 · ∇ω = 0 (
1

Re
∆ω), (x, t) ∈ Ω× (0, T ]

ω(x, 0) = ω0(x), x ∈ Ω
(7.8)

−∆ψ = ω, in Ω

∂ψ

∂n
= g, on ∂Ω∫

Ω
ψ = 0 ∀t ∈ [0, T ]

(7.9)

where U = ∇⊥ψ and ω = ∇×U. The boundary condition now becomes

ω = 0, x ∈ ∂Ω− (∂Ω for Navier-Stokes) (7.10)

where ∂Ω− is the inflow boundary given as

∂Ω− = {x ∈ ∂Ω: U0 · n < 0}

where n is the unit normal on the boundary of Ω.
Our aim is to determine U, and hence the total velocity Ũ, by minimizing the functional

J(g, ω0) =
1

2

∫
Q

(Et + (∇⊥ψ(g, ω0) + U0) · ∇E)2 +
α2

2

∫ T

0

∫
∂Ω
|g|2 +

β2

2

∫
Ω
|ω0|2 (P1)

subject to (7.8), (7.9) and (7.10).

7.3.1 Existence and Uniqueness of Minimizer

We want to show existence of a unique minimizer of (P1). Let Z = L2([0, T ];H
1
2 (∂Ω))×L2(Ω)

with the norm ‖(g, ω0)‖Z =
(∫ T

0

∫
∂Ω |g|

2 +
∫

Ω |ω0|2
)1/2

.

Theorem 7.3.1. The functional J given in (P1) is strictly convex with respect to (ω0, g)

Before proving Theorem (7.3.1) we show that (ψ, ω) given by (7.8) and (7.9) is linear in
(ω0, g).

Lemma 7.3.1. (ψ, ω) given by (7.8) and (7.9) is linear in (g, ω0) ∈ L2([0, T ];H
1
2 (∂Ω))×L2(Ω)

Proof. Let (ψ1, ω1) and (ψ2, ω2) satisfy (7.8) and(7.9) for (g1, ω1
0) and (g2, ω2

0) ∈ L2([0, T ];H
1
2 (∂Ω))×

L2(Ω) respectively. Let us consider ω̃0 = αω1
0+βω2

0 for α, β ∈ R. Then we see that ω̃ = αω1+βω2

satisfy (7.8) for initial condition ω̃0. Now let ψ̃ = αψ1 + βψ2. Then we see that ψ̃ satisfies

−∆ψ̃ = ω̃, in Ω

∂ψ̃

∂n
= g̃, on ∂Ω∫

Ω
ψ̃ = 0 ∀t ∈ [0, T ]

(7.11)

where g̃ = αg1 + βg2. This shows (ψ, ω) is linear in (g, ω0)
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Proof of Theorem 7.3.1. Let X1 = (g1, ω1
0) and X2 = (g2, ω2

0). Then for 0 < λ < 1, we have

J(λX1 + (1− λ)X2) =
1

2

∫
Q
{Et +

[
∇⊥ψ(λX1 + (1− λ)X2) + U0

]
· ∇E}2

+
α2

2

∫ T

0

∫
∂Ω

∣∣λg1 + (1− λ)g2
∣∣2 +

β2

2

∫
Ω

∣∣λω1
0 + (1− λ)ω2

0

∣∣2
=

1

2

∫
Q
{(Et + U0 · ∇E) +

[
∇⊥ψ(λX1 + (1− λ)X2)

]
· ∇E}2

+
α2

2

∫ T

0

∫
∂Ω

∣∣λg1 + (1− λ)g2
∣∣2 +

β2

2

∫
Ω

∣∣λω1
0 + (1− λ)ω2

0

∣∣2
≤ 1

2

∫
Q

2(Et + U0 · ∇E)2 +
([
λ∇⊥ψ(X1) + (1− λ)∇⊥ψ(X2)

]
· ∇E

)2

+
1

2

∫
Q

2(Et + U0 · ∇E) ·
([
λ∇⊥ψ(X1) + (1− λ)∇⊥ψ(X2)

]
· ∇E

)
+
α2

2

(
λ

∫ T

0

∫
∂Ω

∣∣g1
∣∣2 + (1− λ)

∫ T

0

∫
∂Ω

∣∣g2
∣∣2)

+
β2

2

(
λ

∫
Ω

∣∣ω1
0

∣∣2 + (1− λ)

∫
Ω

∣∣ω2
0

∣∣2)
(Using Lemma 7.3.1 and convexity of L2 norm)

(7.12)
Equality holds iff X1 = X2. So for X1 6= X2, we have

J(λX1 + (1− λ)X2) < λJ(X1) + (1− λ)J(X2), 0 < λ < 1

This shows J is strictly convex with respect to (ω0, g).

Theorem 7.3.2. The constraint set C = {ω ∈ L2([0, T ];L2(Ω)) : ω satisfies (7.8) and (7.10)}
is given by the level set of a convex function.

Proof. For the vorticity equation in (7.8) corresponding to Euler’s flow, there is a unique solution
ω ∈ L2([0, T ];L2(Ω)) and it can be given by S(t)ω0 where (S(t))t≥0 is a C0-semi-group of
contractions in L2([0, T ];L2(Ω)) [11]. For the vorticity equation in (7.8) corresponding to Navier-
Stokes flow, there exists a unique solution ω ∈ L2([0, T ];L2(Ω)) and it can be given by S̃(t)ω0

where (S̃(t))t≥0 is a C0-semi-group of contractions in L2([0, T ];L2(Ω)) [21]. Both the solutions
for Euler and Navier-Stokes equations represented by ω satisfy

‖ω(., t)‖L2(Ω) ≤ ‖ω0‖L2(Ω) (7.13)

by the boundedness of the operator S. Let

A : L2(Ω) −→ L2([0, T ];L2(Ω))

be defined as
A(ω0) = S(t)ω0 ( or S̃(t)ω0)

where ω satisfies (7.8). As S(S̃) is a bounded linear bijection, A is a bounded linear bijection.
Consider the function

F (ω0) = A(ω0)− ω

where ω ∈ L2([0, T ];L2(Ω)) and satisfies (7.8). This is a convex bijection and hence the con-
straint set (7.8) and (7.10) is given by

F (ω0) = 0

i.e. the level set of a convex function.
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Theorem 7.3.3. The constraint set (7.9) is given by the level set of a convex function.

Proof. The constraint set (7.9) is given as

−∆ψ(x, t) = ω, x ∈ Ω

∂ψ

∂n
= g(x, t), in ∂Ω, ∀t ∈ [0, T ].∫

Ω
ψ = 0 ∀t ∈ [0, T ]

(7.14)

We have

−
∫

Ω
(∆ψ(x, t))φ(x)dx = −

∫
Ω
ω(x, t)φ(x)dx, ∀φ ∈ H1(Ω) (7.15)

Using integration by parts we obtain∫
Ω
∇ψ(x, t) · ∇φ(x)−

∫
∂Ω
g(x, t)φ(x) = −

∫
Ω
ω(x, t)φ(x) ∀t ∈ [0, T ] (7.16)

Setting φ = ψ, taking modulus on both sides of (7.16) and using Holder’s inequality and
Poincare-Wirtinger inequality gives

‖ψ‖H1(Ω) ≤ ‖g‖H 1
2 (∂Ω)

+ ‖ω‖L2(Ω) (7.17)

which implies ∫ T

0
‖ψ‖H1(Ω) ≤

∫ T

0
‖g‖

H
1
2 (∂Ω)

+

∫ T

0
‖ω‖L2(Ω) (7.18)

where

‖g‖
H

1
2 (∂Ω)

=

∫
∂Ω
|g|2

Let us consider the solution operator of (7.14)

B : L2([0, T ];H1(Ω)) −→ L2([0, T ];H
1
2 (∂Ω))

ψ 7−→ g

We now show that B−1 is a bounded linear bijection. For a fixed ω ∈ L2([0, T ];L2(Ω)), given

g ∈ L2([0, T ];H
1
2 (∂Ω)) there exists a unique ψ ∈ L2([0, T ];H1(Ω)) such that ψ satisfies (7.14).

This shows that B is a bijection. Also B−1 is convex for if ψ1 and ψ2 satisfy (7.14) for boundary
data g1 and g2 respectively then λψ1 + (1 − λ)ψ2 is a solution of (7.14) for boundary data
λg1 + (1 − λ)g2. By (7.18), B−1 is bounded. Hence B−1 is a bounded linear bijection. Now
consider the function

G(g) = B−1(g)− ψ

for any fixed ω ∈ L2([0, T ];L2(Ω)) where ψ ∈ L2([0, T ];H1(Ω)) and satisfies (7.14). This is a
convex bijection and hence the constraint set (7.14) is given by

G(g) = 0

i.e. the level set of a convex function.

So the set
C = {(g, ω0) ∈ Z : F (ω0) = 0, G(g) = 0} (7.19)

is a closed convex subset of Z. We now show that J is continuous and coercive.

Theorem 7.3.4. The functional J given in (P1) is continuous
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Proof. We will use Theorem 6.3.3 to prove our statement. We assume

‖E‖W 1,∞(Q) ≤M. (7.20)

As 0 ∈ Z, we consider a neighborhood of zero given as N1 = {(g, ω0) : ‖(g, ω0)‖Z < 1}. Now

|J(g, ω0)| = 1

2

∫
Q

(Et + (∇⊥ψ(g, ω0) + U0).∇E)2 +
α2

2

∫ T

0

∫
∂Ω
|g|2 +

β2

2

∫
Ω
|ω0|2

≤ 1

2

∫
Q

(
E2
t + (∇⊥ψ(g, ω0) · ∇E)2 + 2Et(∇⊥ψ(g, ω0) · ∇E)

)
+ C1‖(g, ω0)‖2Z

Using Hölder’s inequality and (7.20), (7.13) and (7.17) we get

|J(g, ω0)| < 3M

2
µ(Q) +M2‖(g, ω0)‖2Z + C1‖(g, ω0)‖2Z

<
3M

2
µ(Q) +M2 + C1

<∞.

where µ(Q) is the measure of Q. This gives us J(U) is bounded above in N1. As J is convex
(by Theorem 7.3.1) it implies J is continuous for all U ∈ Z (by Theorem 6.3.3).

Theorem 7.3.5. The functional J given in (P1) is coercive for α > 0 and β > 0.

Proof. From (P1) we get

J(g, ω0) ≥ α2

2

∫ T

0

∫
∂Ω
|g|2 +

β2

2

∫
Ω
|ω0|2

As α, β > 0, let L = min{α, β}. Then L > 0. So we have

J(g, ω0) ≥ 〈
(∫ T

0

∫
∂Ω
|g|2 +

∫
Ω
|ω0|2

)
= L‖(g, ω0)‖2Z

So if ‖(g, ω0)‖Z →∞ then J(g, ω)→∞. Hence J is coercive.

J is a strictly convex continuous coercive functional on Z and the constraint set C given in
(7.19) is convex. By Theorem 6.3.4, the convex minimization problem (7.7) has a unique global
minimizer.

7.3.2 Optimization using Lagrange Multipliers

In Section (7.3.1), we showed existence of a unique minimizer of J defined in (P1). Now
we determine the optimum solution. The functional J is to be minimized subject to PDE
constraints. This is done by the use of Lagrange multipliers [46]. We first write down the
weak forms of (7.8) and (7.9). Multiplying (7.8) with a test function y ∈ H1([0, T ];L2(Ω)),
integrating by parts with respect to t and incorporating initial conditions for ω, we get∫

Q
(−ωyt + (U0 · ∇ω)y) +

∫
Ω
ω(T )y(T )− ω0y(0) = 0. (7.21)

If we consider the Navier-Stokes equation then performing an integration by parts over Ω and
using boundary conditions on ω, we get∫

Q
(−ωyt + (U0 · ∇ω)y) +

∫
Ω
ω(T )y(T )− ω0y(0) +

1

Re

∫
Q
∇ω · ∇y = 0. (7.22)
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Multiplying (7.9) with a test function φ ∈ L2([0, T ];H1
a(Ω)), integrating by parts over Ω, and

using boundary conditions on ψ we get∫
Q

(∇ψ · ∇φ− ωφ)−
∫ T

0

∫
∂Ω
gφ = 0. (7.23)

Hence to determine the optimal solution, the auxiliary functional can be written as

J̃(y, ω, φ, ψ, g, ω0) = J +

∫
Q

(−ωyt + (U0 · ∇ω)y) +

∫
Ω
ω(T )y(T )− ω0y(0)

+

∫
Q

(∇ψ · ∇φ− ωφ)−
∫ T

0

∫
∂Ω
gφ (+

1

Re

∫
Q
∇ω · ∇y)

(7.24)

where y is the Lagrange Multiplier corresponding to the first constraint (7.8) and φ is the
Lagrange Multiplier corresponding to the second constraint (7.14). Here ω, y ∈ L2([0, T ];L2(Ω))
and ψ, φ ∈ L2([0, T ];H1

a(Ω)) where

H1
a(Ω) = {ψ ∈ H1(Ω) :

∫
Ω
ψ = 0}

7.3.3 PDE’s obtained after minimization of J̃

Taking the Gateaux derivative of J̃ in (7.24) wrt y, ω, φ, ψ, g, ω0, the standard optimality con-
ditions [100] are

∂J̃

∂y
= 0,

∂J̃

∂ω
= 0,

∂J̃

∂φ
= 0,

∂J̃

∂ψ
= 0,

∂J̃

∂g
= 0,

∂J̃

∂ω0
= 0. (7.25)

The first and second equations in (7.25) gives the vorticity equation and its adjoint

ωt + U0 · ∇ω = 0 (
1

Re
∆ω)

ω(x, 0) = ω0(x)

ω = 0, x ∈ ∂Ω− (∂Ω)

(7.26)

yt + U0 · ∇y = 0 (− 1

Re
∆y)

y(x, T ) = 0

y = 0 on ∂Ω

(7.27)

The third and fourth equations in (7.25) gives the equation for streamfunction and its adjoint

−∆ψ = ω, U = ∇⊥ψ
∂ψ

∂n
= g∫

Ω
ψ = 0

(7.28)

∆φ = −∇E · ∇⊥F
∂φ

∂n
= −F ∂E

∂t∫
Ω
φ = 0

(7.29)

where F = Et + Ũ · ∇E. The fifth and sixth equations in (7.25) gives the optimality conditions

α2g = φ, β2ω0 = y(0) (7.30)
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7.4 Finite Element Method for problem (P1)

Equations (7.26), (7.27), (7.28), (7.29) and (7.30) are solved using space-time finite elements,
considering time as the third dimension. The equations (7.26) and (7.27) represent the forward
vorticity equation and its backward adjoint equation. For Navier-Stokes flow, the solutions to
the equations are smooth because of the presence of an extra diffusivity term on the right hand
side. So continuous Galerkin finite elements are used. For Euler’s flow, vorticity is non-smooth.
Since our aim is to capture vortex structures well, we use discontinuous Galerkin method. The
equations (7.28) and (7.29) represent the streamfunction equation and its adjoint equation which
are elliptic in nature and hence they are solved using continuous Galerkin finite elements.

7.4.1 Discontinuous Galerkin formulation for vorticity equation for Euler’s
flow

Equations (7.26) and (7.27) are solved using the finite element method. Since we are interested in
tracking discontinuous vortices, discontinuous Galerkin finite elements are used. It is an explicit
method and hence there is no global matrix inversion. Also stability and energy conservation is
maintained. The normal velocity U ·n is continuous across the element boundary and hence use
of correct upwind flux is possible maintaining the stability [25, 26]. Let Th be a triangulation
of domain Q and consider the space of piecewise polynomials

V k
h = {v ∈ L2(Q) : V |K ∈ P0 ∀K ∈ Th} (7.31)

where P0(K) is the space of constant polynomials on K. The vorticity equation associated to
Euler’s flow given in (7.26) can be rewritten in conservative form as

∇̃ · ωB = 0

where

∇̃ = (
∂

∂x
,
∂

∂y
,
∂

∂t
)

and
B = (u0, v0, 1)

Multiplying by a function v ∈ L2(Q) with supp(v) = K and integrate by parts∫
∂K

(B.n)ωv −
∫
K
ω(B.∇v) = 0

We consider the upwind flux to approximate the first term in the integral given by

H(ω+, ω−, n) = (B.n)+ω+ + (B.n)−ω−

where

(B.n)+ω+ + (B.n)−ω− =

{
(B.n)ω+ if (B.n) ≥ 0
(B.n)ω− if (B.n) < 0

Then the DG scheme in K is given as∫
∂K

H(ωh+, ω
h
−, n)vh −

∫
K
ωh(B.∇vh) = 0

Incorporating the boundary conditions and adding the equations for all elements the discrete
problem is to find ωh ∈ V k

h such that

−
∑
K∈τh

∫
K
ωh(B.∇vh) +

∑
e∈ΓI

∫
e
H(ωh+, ω

h
−, n)[vh] +

∫
Γ−

H(ωh+, ω0, n) +

∫
Γ+

((B.n)ωhvh) = 0

∀vh ∈ V k
h

(7.32)
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where ΓI represents the interior edges, Γ− represents the inflow boundary given by

Γ− = {x ∈ ∂Ω : B.n(x) < 0} (7.33)

and Γ+ represents the outflow boundary. A detailed analysis of the scheme can be found in
[27].

For the adjoint equation (7.27) the same DG formulation in (7.32) is used with ωh replaced
yh, B = (−u0,−v0,−1) and inflow boundary conditions as yh = 0 using (7.33).

7.4.2 Continuous Galerkin formulation for vorticity equation for Navier-
Stokes

For the vorticity equation associated to Navier-Stokes flow given in (7.26) let us define the
continuous space

W k
h = {v ∈ C0(Q) : V |K ∈ Pk ∀K ∈ Th} (7.34)

where Pk(K) is the space of polynomials of degree k onK. We choose k = 1 for our computations
unless otherwise mentioned. The discrete problem is to find ωh ∈W k

h such that∫
Q

(−ωhvht +(U0 ·∇ωh)vh)+
1

Re

∫
Q
∇ωh ·∇vh+

∫
Ω

(
ωh(T )vh(T )− ω0v

h(0)
)

= 0 ∀vh ∈W k
h

(7.35)
In a similar way, the discrete problem for the adjoint equation (7.27) is to find yh ∈ W k

h such
that∫

Q

(
yhvht − (U0 · ∇yh)vh)− 1

Re

∫
Q
∇yh · ∇vh +

∫
Ω
yh(0)vh(0)

)
= 0 ∀vh ∈W k

h (7.36)

with inflow boundary conditions yh = 0.

7.4.3 Continuous Galerkin formulation for streamfunction equation

To solve the streamfunction equation given by (7.28), the problem can be stated as: given ω
and g, we want to find ψ ∈ L2([0, T ];H1

a(Ω)) such that∫
Q

(∇ψ · ∇ψ̄ + ωψ̄)−
∫ T

0

∫
∂Ω
gψ̄ = 0, ∀ψ̄ ∈ L2([0, T ];H1

a(Ω)) (7.37)

As (7.37) is solved using finite element method, we need to determine a discrete approximation
of the space L2([0, T ];H1

a(Ω)). But this is difficult in practice. Also the compatibility condition∫
Q
ω +

∫ T

0

∫
∂Ω
g = 0

needs to be satisfied for existence of solutions. In order to overcome these issues, Lagrange
multipliers are used to add the constraint (7.6) to (7.37). So the modified weak formulation is
to find (ψ, s) ∈ L2([0, T ];H1(Ω))× R such that∫

Q
(∇ψ ·∇ψ̄+ωψ̄)+

∫
Q
s̄ψ+

∫
Q
sψ̄−

∫ T

0

∫
∂Ω
gψ̄ = 0, ∀(ψ̄, s̄) ∈ L2([0, T ];H1(Ω))×R (7.38)

This determines a discrete approximation of the space L2([0, T ];H1(Ω)). Also the compatibility
condition is automatically taken care of. So the discrete problem is to find (ψh, s) ∈ W k

h × R
such that∫

Q
(∇ψh · ∇ψ̄h + ωψ̄h) +

∫
Q
s̄ψh +

∫
Q
sψ̄h −

∫ T

0

∫
∂Ω
gψ̄h = 0, ∀(ψ̄h, s̄) ∈W k

h × R (7.39)
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A similar approach is used to solve the adjoint equation (7.29). After substituting the value
of g and ω0 from (7.30) in (7.32), (7.35) and (7.39), the discrete weak forms for the vorticity
and streamfunction equations and their adjoints are combined and solved in a coupled way to
obtain U and hence Ũ. Next we describe the procedure to determine E,Et,∇E.

7.4.4 Image Data

Our aim is to generate a sequence of synthetic images E and try to recover the velocity given
the information of the derivatives of E. For this purpose E is chosen whose analytic expression
at t = 0 is

E0(x, y) = E(x, y, 0) = e−50[(x−1/2)2+(y−1/2)2].

To get E at all times, we solve the advection equation

Et + Ue · ∇E = 0, (x, t) ∈ Ω× (0, T ]

E(x, 0) = E0, in Ω

E = 0, on Γ−

(7.40)

where Ue represents the velocity obtained by solving incompressible Euler (7.42) or Navier-
Stokes flow (7.43) using finite element method with appropriate boundary conditions and Γ−
is given by (7.33) with B = (Ue, 1). We want E and its derivatives to be differentiable. Hence
the weak formulation can be stated as: find E ∈ H2

c (Q) such that∫
Q

(Et + Ue · ∇E)Ẽ = 0

for all Ẽ ∈ H2
0 (Q) where

H2
c (Q) = {E ∈ H2(Q) : E(x, 0) = E0 in Ω, E = 0 on Γ−}.

The discrete problem is to find Eh ∈W k
h ∩H2

c (Q) such that∫
Q

(Eht + Ue · ∇Eh)Ẽh = 0 (7.41)

for all Ẽh ∈ W k
h ∩ H2

0 (Q). Equation (7.41) is solved using space-time finite element method
with quadratic elements. Thus the solution Eh can be written as

Eh =
∑
i

Ehi φi

where φi are basis functions of W k
h which are continuous and piecewise quadratic polynomials

in each element. Hence the derivatives of E are evaluated by computing the derivatives of φi.
The unsteady incompressible Euler equations can be written in vorticity-streamfunction form
as

ωt + Ue · ∇ω = 0, (x, t) ∈ Ω× (0, T ]

ω(x, 0) = ω0(x), x ∈ Ω

−∆ψ = ω, in Ω

ψ = g1, on ∂Ω

(7.42)

where Ue = ∇⊥ψ and ω = ∇×Ue. The unsteady incompressible Navier-Stokes equations can
be written in vorticity-streamfunction form as

ωt + Ue · ∇ω =
1

Re
∆ω, (x, t) ∈ Ω× (0, T ]

ω(x, 0) = ω0(x), x ∈ Ω

∆ψ = ω, in Ω

ψ = ψb, on ∂Ω

(7.43)
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where Ue = ∇⊥ψ, ω = ∇×Ue and Re is the Reynolds number. ψb is a prescribed boundary
condition. In practice, derivatives of images will be computed using some finite differences
which will introduce errors in the computed velocity.

7.4.5 Test Vortex Flows

Our domain is Q = (0, T )×Ω, where Ω = [0, 1]×[0, 1]. Two types of vortex flows are considered.
Vortex 1: The tangential velocity distribution for the initial condition for vorticity is prescribed
between an outer radius r = RO, and a core radius r = RC . For radius greater than RO the
tangential velocity is set to be zero. The tangential velocity of the vortex is expressed as follows:

uθ(r) =

{
Uc

r
RC

r < RC
Ar + B

r RC ≤ r ≤ RO
(7.44)

where

A =
UCRC

R2
O −R2

C

, B =
UCRCR

2
O

R2
O −R2

C

Then the initial vorticity is given by

ω(x, y, 0) =

{
2A, RC ≥ r ≤ R0

2A1, r ≤ RC
(V1)

where A1 = UC
RC

. Our computations are done with RO = 0.2 and RC = 0.1.
Vortex 2: A vortex patch whose initial condition is as follows:

ω(x, y, 0) =


−2, 0.2 ≤ x ≤ 0.6, 0.1 ≤ y ≤ 0.4
2, 0.2 ≤ x ≤ 0.6, 0.55 ≤ y ≤ 0.85
0 otherwise

(V2)

On ∂Ω, Dirichlet boundary condition Ue = (0.5, 0) is imposed. This is equivalent to Dirichlet
boundary condition ψ = −0.5y.

7.4.6 Mesh

The computations are done using COMSOL Multiphysics. The domain Q is partitioned into
tetrahedrons as shown in Figure 7.1. The average mesh size is h = 0.01. There are 196365
triangles with 1640836 degrees of freedom. Computations for Navier-Stokes flow are done with
Re = 1000.

7.4.7 Solving equations (7.42) and (7.43)

To solve (7.42) and (7.43) using finite element method to determine Ue, a similar kind of
approach for the vorticity equations as described in Section 7.4.1 and 7.4.2 is used. For solving
the streamfunction equation, the weak formulation is to find ψ ∈ L2([0, T ];H1

b (Ω)) such that∫
Q

(∇ψ · ∇ψ̄ + ωψ̄)−
∫ T

0

∫
∂Ω
gψ̄ = 0, ∀ψ̄ ∈ L2([0, T ];H1

b (Ω)) (7.45)

where
H1
b (Ω) = {ψ ∈ H1(Ω) : ψ = ψb on ∂Ω}

So the discrete problem is to find ψh ∈W k
h ∩H1

b such that∫
Q

(∇ψh · ∇ψ̄h + ωψ̄h) = 0, ∀ψ̄h ∈W k
h ∩H1

0 (Ω) (7.46)
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Figure 7.1: 3D mesh

The discrete weak forms as given in Section 7.4.1 and (7.46) for the vorticity equation and
streamfunction equation are combined and solved in a coupled way to obtain Ue. Finally the
relative L2 error in velocity is defined as

Relative L2 error =
‖Ue −Uo‖
‖Ue‖

(7.47)

and the advection error is defined as

Advection Error = ‖Et + Uo · ∇E‖ (7.48)

where Ue is the exact velocity and Uo is the obtained velocity and the norm ‖ · ‖ is the usual
L2 norm in Q for vector functions.

7.5 Numerical Examples

7.5.1 Advection of vortex 1 and vortex 2 under Euler’s flow

The exact flow is given by solving (7.42) with initial vorticity given by (7.44) and (V2) and
boundary condition for streamfunction given in Section (7.4.5). Figure (7.2) and (7.3) shows
the velocity and vorticity plots at time t = 0.5. The figures show that the translational velocity,
which is the constant velocity (0.5, 0), is well captured. Also the vortex movement is well
recovered. Table (7.1) and (7.2) shows the relative L2 error and the advection error for various
values of α and β. It has been numerically tested that for higher values of α and β of the order of
102 or greater gives bad results. This is because we are over-penalizing the initial vorticity and
the boundary condition for the streamfunction leading to larger errors in the flow estimation.
So for best results, we choose the value of α and β to be in the range of [0.1, 10].

7.5.2 Advection of vortex 1 and vortex 2 under Navier-Stokes flow

The exact flow is given by solving (7.43) with initial vorticity given by (7.44) and (V2) and
boundary condition for streamfunction given in Section (7.4.5). Figure (7.4) and (7.5) shows
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(a) Exact (b) Recovered

Figure 7.2: Velocity and vorticity plots for vortex motion (7.44) under Euler’s flow at t = 0.5
for α = β = 1

α β Relative L2 Error Advection Error

0.01 0.01 2.5e-3 1.6 e-4
1 1 2.8e-3 1.6 e-4
10 10 2.7e-3 1.5 e-4

Table 7.1: Relative L2 Errors and Advection Errors for different values of α and β

(a) Exact (b) Recovered

Figure 7.3: Velocity and vorticity plots for vortex motion (V2) under Euler’s flow at t = 0.5 for
α = β = 1
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α β Relative L2 Error Advection Error

0.01 0.01 3.1e-3 1.1 e-4
1 1 3.2e-3 1.1 e-4
10 10 3.2e-3 1.1 e-4

Table 7.2: Relative L2 Errors and Advection Errors for different values of α and β

(a) Exact (b) Recovered

Figure 7.4: Velocity and vorticity plots for vortex motion (7.44) under Navier-Stokes flow at
t = 0.5 for α = β = 1

the velocity and vorticity plots at time t = 0.5. Again the figures show that the translational
velocity, which is the constant velocity (0.5, 0), is well captured. Also the vortex movement is
well recovered. We note the diffusivity of the vortex structures as is expected in Navier-Stokes
flows. Table (7.3) and (7.4) shows the relative L2 error and the advection error for various
values of α and β.

7.6 Formulation 2 - Linearized Flow

We now assume

Ũ = U0 + U

but now U0 is curl free, incompressible and unknown. Also U is assumed to be small relative
to U0. This is the Helmholtz decomposition of Ũ. Since U0 is unknown, we assume it is
smooth and hence we add a regularization term to the functional J given in (P1). Our aim is

α β Relative L2 Error Advection Error

0.01 0.01 5.1e-3 2.2 e-4
1 1 5.2e-3 2.2 e-4
10 10 5.1e-3 2.6 e-4

Table 7.3: Relative L2 Errors and Advection Errors for different values of α and β
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(a) Exact (b) Recovered

Figure 7.5: Velocity and vorticity plots for vortex motion (V2) under Navier-Stokes flow at
t = 0.5 for α = β = 1

α β Relative L2 Error Advection Error

0.01 0.01 4.4e-3 2.7 e-4
1 1 4.1e-3 2.5 e-4
10 10 4.3e-3 2.4 e-4

Table 7.4: Relative L2 Errors and Advection Errors for different values of α and β
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to determine U and hence the total velocity Ũ by minimizing

J1(ψ, ω0, g,U0) =
1

2

∫
Q

(Et + Ũ.∇E)2 +
α2

2

∫ T

0

∫
∂Ω
|g|2 +

β2

2

∫
Ω
|w0|2 +

γ2

2

∫
Ω
|∇U0|2 (7.49)

subject to the constraint set (7.8), (7.9) and (7.10).

7.6.1 Optimization using Lagrange Multipliers

Using the weak forms for the vorticity and the streamfunction equations given by (7.62)( or
(7.63)) and (7.64) in Section 7.8.1, to determine the optimal solution, the auxiliary functional
can be written as

J̃(y, ω, φ, ψ,U0, g, ω0) = J1 +

∫
Q

(−ωyt + (U0 · ∇ω)y) +

∫
Ω
ω(T )y(T )− ω0y(0)

+

∫
Q

(∇ψ · ∇φ− ωφ)−
∫ T

0

∫
∂Ω
gφ (+

1

Re

∫
Q
∇ω · ∇y)

(7.50)

where y is the Lagrange Multiplier corresponding to the first constraint set (7.8) and φ is the La-
grange Multiplier corresponding to the second constraint set (7.14). Here ω, y ∈ L2([0, T ];L2(Ω))
and ψ, φ ∈ L2([0, T ];H1

a(Ω)) where

H1
a(Ω) = {ψ ∈ H1(Ω) :

∫
Ω
ψ = 0}

7.6.2 PDE’s obtained after minimization of J̃

Taking the Gateaux derivative of J̃ in (7.50) wrt y, ω, φ, ψ, g, ω0, the standard optimality con-
ditions [100] are

∂J̃

∂y
= 0,

∂J̃

∂ω
= 0,

∂J̃

∂φ
= 0,

∂J̃

∂ψ
= 0,

∂J̃

∂U0
= 0,

∂J̃

∂g
= 0,

∂J̃

∂ω0
= 0 (7.51)

The first and second equations in (7.51) gives the vorticity equation and its adjoint

ωt + U0 · ∇ω = 0 (
1

Re
∆ω)

ω(x, 0) = ω0(x)

ω = 0, x ∈ ∂Ω− (∂Ω)

(7.52)

yt + U0 · ∇y = 0 (− 1

Re
∆y)

y(x, T ) = 0

y = 0 on ∂Ω

(7.53)

The incompressibility of U0 is essential in obtaining (7.53). The third and fourth equations in
(7.51) gives the equations for the streamfunction and its adjoint

−∆ψ = ω, U = ∇⊥ψ
∂ψ

∂n
= g∫

Ω
ψ = 0

(7.54)
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(a) Exact (b) Recovered

Figure 7.6: Velocity and vorticity plots for vortex motion (7.44) under Euler’s flow at t = 0.5
for α = β = γ = 1

∆φ = −∇E.∇⊥F
∂φ

∂n
= −F ∂E

∂t∫
Ω
φ = 0

(7.55)

The fifth equation in (7.51) gives the PDE satisfied by U0 with the boundary conditions

F∇E + y∇ω − γ2∆U0 = 0

∂U0

∂n
= 0

(7.56)

where F = Et + Ũ · ∇E. The last two equations in (7.51) gives the optimality conditions

α2g = φ, β2ω0 = y(0) (7.57)

We again use a similar kind of computational approach as used in Section 7.4.

7.7 Numerical Examples

7.7.1 Advection of vortex 1 and vortex 2 under Euler’s flow

The exact flow is given by solving (7.42) with initial vorticity given by (7.44) and (V2) and
boundary condition for streamfunction given in Section (7.4.5). Figure (7.6) and (7.7) shows
the velocity and vorticity plots at time t = 0.5. As in the test cases in Section 7.5.1, the
translational velocity is well recovered. Also the vortex structures are well recovered. Table
(7.5) and (7.6) shows the relative L2 error and the advection error for various values of α and
β. As in the test cases in Section 7.5.1, the best results are obtained values of α and β in the
range of [0.1, 10]. For the parameter γ we also use values in the range of [0.1, 10] because higher
values of γ lead to over-smoothing of the translational velocity field which is not desirable when
we have discontinuous vortices.
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α β γ Relative L2 Error Advection Error

0.01 0.01 0.01 2.8e-3 1.3 e-4
1 1 1 2.6e-3 1.4 e-4
10 10 10 2.7e-3 1.3 e-4

Table 7.5: Relative L2 Errors and Advection Errors for different values of α, β and γ

(a) Exact (b) Recovered

Figure 7.7: Velocity and vorticity plots for vortex motion (V2) under Euler’s flow at t = 0.5 for
α = β = γ = 1

α β γ Relative L2 Error Advection Error

0.01 0.01 0.01 3.5e-3 1.7 e-4
1 1 1 3.4e-3 1.2 e-4
10 10 10 3.1e-3 1.4 e-4

Table 7.6: Relative L2 Errors and Advection Errors for different values of α, β and γ
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(a) Exact (b) Recovered

Figure 7.8: Velocity and vorticity plots for vortex motion (7.44) under Navier-Stokes flow at
t = 0.5 for α = β = γ = 1

α β γ Relative L2 Error Advection Error

0.01 0.01 0.01 5.4e-3 2.8 e-4
1 1 1 5.3e-3 2.4 e-4
10 10 10 5.6e-3 2.7 e-4

Table 7.7: Relative L2 Errors and Advection Errors for different values of α, β and γ

7.7.2 Advection of vortex 1 and vortex 2 under Navier-Stokes flow

The exact flow is given by solving (7.43) with initial vorticity given by (7.44) and (V2) and
boundary condition for streamfunction given in Section (7.4.5). Figure (7.8) and (7.9) shows
the velocity and vorticity plots at time t = 0.5. Again the translational velocity is well recovered.
Also the diffusive vortex movement is well captured. Table (7.7) and (7.8) shows the relative
L2 error and the advection error for various values of α and β.

7.8 Formulation 3 - Non-Linear Flow

In this case Ũ is determined by minimizing

J(ψ(ω0, g), ω0, g) =
1

2

∫
Q

(Et +∇⊥ψ.∇E)2 +
α2

2

∫ T

0

∫
∂Ω
|g|2 +

β2

2

∫
Ω
|ω0|2 (7.58)

α β γ Relative L2 Error Advection Error

0.01 0.01 0.01 4.3e-3 2.2 e-4
1 1 1 4.4e-3 2.8 e-4
10 10 10 4.6e-3 2.5 e-4

Table 7.8: Relative L2 Errors and Advection Errors for different values of α, β and γ
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(a) Exact (b) Recovered

Figure 7.9: Velocity and vorticity plots for vortex motion (V2) under Navier-Stokes flow at
t = 0.5 for α = β = γ = 1

subject to

ωt + Ũ · ∇ω = 0 (
1

Re
∆ω), (x, t) ∈ Ω× (0, T ]

ω(x, 0) = ω0(x), x ∈ Ω

ω = 0, x ∈ ∂Ω− (∂Ω for Navier-Stokes)

(7.59)

∆ψ = ω, in Ω

∂ψ

∂n
= g, on ∂Ω

(7.60)

Ũ = ∇⊥ψ

ω = ∇× Ũ
(7.61)

7.8.1 Optimization using Lagrange Multipliers

We first write down the weak forms of (7.59) and (7.60). Multiplying (7.59) with a test function
y ∈ H1([0, T ];L2(Ω)), integrating by parts with respect to t and incorporating initial conditions
for ω, we get ∫

Q
(−ωyt + (Ũ · ∇ω)y) +

∫
Ω
ω(T )y(T )− ω0y(0) = 0. (7.62)

If we consider the Navier-Stokes equation then performing an integration by parts over Ω and
using boundary conditions on ω, we get∫

Q
(−ωyt + (Ũ · ∇ω)y) +

∫
Ω
ω(T )y(T )− ω0y(0) +

1

Re

∫
Q
∇ω · ∇y = 0. (7.63)

Multiplying (7.9) with a test function φ ∈ L2([0, T ];H1
a(Ω)), integrating by parts over Ω, and

using boundary conditions on ψ we get∫
Q

(∇ψ · ∇φ− ωφ)−
∫ T

0

∫
∂Ω
gφ = 0. (7.64)
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Hence to determine the optimal solution, the auxiliary functional can be written as

J̃(y, ω, φ, ψ, g, ω0) = J +

∫
Q

(−ωyt + (Ũ · ∇ω)y) +

∫
Ω
ω(T )y(T )− ω0y(0)

+

∫
Q

(∇ψ · ∇φ− ωφ)−
∫ T

0

∫
∂Ω
gφ (+

1

Re

∫
Q
∇ω · ∇y)

(7.65)

where y is the Lagrange Multiplier corresponding to the first constraint set (7.8) and φ is the La-
grange Multiplier corresponding to the second constraint set (7.14). Here ω, y ∈ L2([0, T ];L2(Ω))
and ψ, φ ∈ L2([0, T ];H1

a(Ω)) where

H1
a(Ω) = {ψ ∈ H1(Ω) :

∫
Ω
ψ = 0}

7.8.2 PDE’s obtained after minimization of J̃

Taking the Gateaux derivative of J̃ in (7.65) wrt y, ω, φ, ψ, g, ω0, the standard optimality con-
ditions [100] are

∂J̃

∂y
= 0,

∂J̃

∂ω
= 0,

∂J̃

∂φ
= 0,

∂J̃

∂ψ
= 0,

∂J̃

∂g
= 0,

∂J̃

∂ω0
= 0 (7.66)

The first and second equations in (7.66) gives the vorticity equation and its adjoint

ωt + Ũ · ∇ω = 0 (
1

Re
∆ω)

ω(x, 0) = ω0(x)

ω = 0, x ∈ ∂Ω− (∂Ω)

(7.67)

yt + Ũ · ∇y = 0 (− 1

Re
∆y)

y(x, T ) = 0

y = 0 on ∂Ω

(7.68)

The third and fourth equations in (7.66) gives the equations for the streamfunction and its
adjoint

−∆ψ = ω, Ũ = ∇⊥ψ
∂ψ

∂n
= g

(7.69)

∆φ = −∇E.∇⊥F
∂φ

∂n
= −F ∂E

∂t

(7.70)

where F = Et + Ũ · ∇E. The fifth and sixth equations in (7.66) gives the optimality conditions

α2g = φ, β2ω0 = y(0) (7.71)

7.9 Numerical Examples

7.9.1 Advection of vortex 1 and vortex 2 under Euler’s flow

The exact flow is given by solving (7.42) with initial vorticity given by (7.44) and (V2) and
boundary condition for streamfunction given in Section (7.4.5). Figures (7.10) and (7.11) shows

99



(a) Exact (b) Recovered

Figure 7.10: Velocity and vorticity plots for vortex motion (7.44) under Euler’s flow at t = 0.5
for α = β = 1

α β Relative L2 Error Advection Error

0.01 0.01 0.21 3.21 e-2
0.1 0.01 0.24 3.22 e-2
1 1 0.23 3.26 e-2

Table 7.9: Relative L2 Errors and Advection Errors for different values of α and β

the velocity and vorticity plots at time t = 0.5. Unlike the test cases in Section 7.5.1 and
7.7.1, we see that the translational velocity is not well recovered. Also there is a lot of vortex
shredding in Figure (7.10). It diffuses out the vortex even for Euler’s flow. In Figure (7.11) we
note the vortex patches get diffused to a high extent. Near the red vortex patch there are light
blue patches and vice-versa for the blue vortex patch which means vortex shredding takes place.
The bad recovery of the vortex patches could be due to lack of non-uniqueness of solution to the
vorticity equation (7.67). Table (7.9) and (7.10) shows the relative L2 error and the advection
error for various values of α and β. As in the test cases in Section 7.5.1, the best results are
obtained values of α and β in the range of [0.1, 10].

7.9.2 Advection of vortex 1 and vortex 2 under Navier-Stokes flow

The exact flow is given by solving (7.43) with initial vorticity given by (7.44) and (V2) and
boundary condition for streamfunction given in Section (7.4.5). Figure (7.12) and (7.13) shows
the velocity and vorticity plots at time t = 0.5. As in the test cases in Section 7.9.1, we see that
the translational velocity and vorticity is not well recovered. There is a lot of vortex shredding
and over-diffusivity. Table (7.11) and (7.12) shows the relative L2 error and the advection error

α β Relative L2 Error Advection Error

0.01 0.01 0.35 1.64 e-2
1 1 0.37 1.62 e-2
10 10 0.35 1.61 e-2

Table 7.10: Relative L2 Errors and Advection Errors for different values of α and β
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(a) Exact (b) Recovered

Figure 7.11: Velocity and vorticity plots for vortex motion (V2) under Euler’s flow at t = 0.5
for α = β = 1

α β Relative L2 Error Advection Error

0.01 0.01 0.51 6.6 e-2
1 1 0.55 6.1 e-2
10 10 0.52 6.7 e-2

Table 7.11: Relative L2 Errors and Advection Errors for different values of α and β

for various values of α and β.

7.10 Conclusions

To determine optical velocity for vortex based flows, we have assumed that the underlying
fluid satisfies Euler or Navier-Stokes equations. The vorticity-streamfunction formulation for
the Euler and Navier-Stokes equations were introduced and the Helmholtz decomposition of
the velocity field was used to segregate the translational and rotational part of the velocity
field. To determine the velocity and vorticity field a variational approach to minimize a func-
tional, which penalized the tracking or advection error of the scalar image field and the initial
vorticity and boundary condition for the streamfunction, was used. For the linearized case
we have shown the existence of a unique velocity field. We also exploited the advantages of
the discontinuous Galerkin finite elements for the vorticity equation (in case of Euler’s flow)
to capture discontinuous vortices effectively. Two types of vortex movement under Euler and
Navier-Stokes flows were investigated and it was observed that in the case where we assumed

α β Relative L2 Error Advection Error

0.01 0.01 0.60 7.2 e-2
1 1 0.64 7.4 e-2
10 10 0.65 7.1 e-2

Table 7.12: Relative L2 Errors and Advection Errors for different values of α and β
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(a) Exact (b) Recovered

Figure 7.12: Velocity and vorticity plots for vortex motion (7.44) under Navier-Stokes flow at
t = 0.5 for α = β = 1

(a) Exact (b) Recovered

Figure 7.13: Velocity and vorticity plots for vortex motion (V2) under Navier-Stokes flow at
t = 0.5 for α = β = 1
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Helmholtz decomposition of the velocity vector field, significantly good results were obtained
even for higher Reynolds number flows. In the case where there was no assumption on the
velocity field, occurrence of vortex shredding and high diffusion took place. A reason for this
could be the non-uniqueness of solutions to the vorticity equation which is itself an interesting
theoretical problem. The authors plan to address this in future. It also suggests that to capture
vortex structures, boundary information of the velocity or the initial vorticity is needed or else
rotational dynamics should be introduced into the model. Further work will be to use other
penalties in our objective functional J and try to capture other types of non-linear flows.
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Chapter 8

Numerical Inversion of Circular and
Elliptic Radon Transforms

8.1 Introduction

1 The inversion of circular Radon transforms has been extensively studied by several authors
[1, 2, 7, 72, 73, 31, 9, 30, 33, 32, 34, 87, 70, 10, 71], and to a lesser extent, that of elliptical
Radon transforms [53, 83, 105, 3, 62, 36]. All these papers deal with full data in the radial
direction. In some imaging problems, full data in the radial direction is not available, as is
the case of imaging the surrounding region of a bone. To this end, Ambartsoumian, Gouia-
Zarrad and Lewis in [5] found explicit inversion formulas for the circular Radon transform
with circular acquisition geometry (one of the most widely used ways of collecting data) when
half the data in the radial variable is available. These results were recently generalized by
Ambartsoumian and Krishnan for a class of elliptical and circular Radon transforms in [6]. The
inversion formulas in these papers are given for three cases: support of the function is inside,
outside and on both sides of the acquisition circle. The case when the support is inside the
circle of acquisition is of importance in ultrasound reflectivity imaging, thermoacoustic and
photoacoustic tomography, and non-destructive testing. When the support is outside and on
both sides of the acquisition circle, the inversion formulas are applicable in intravascular and
radar imaging, respectively. Given the importance of these inversion formulas in several imaging
modalities, efficient numerical inversion is of great interest. The main contribution of this paper
is a novel implementation of the inversion formulas for a class of circular and elliptical Radon
transforms with radially partial data obtained in these papers. The inversion formulas given
in [5, 6] were based on an inversion strategy due to Cormack [28] that involved Fourier series
techniques. As shown in these papers, the nth Fourier coefficient of the circular (elliptical)
Radon transform data is related to the nth Fourier coefficient of the unknown function by a
Volterra-type integral equation of the first kind with a weakly singular kernel. This can be
transformed to a Volterra-type integral equation of the second kind in which the singularity is
removed [104]. It is well known that such an integral equation has a unique solution and this can
be obtained by the Picard’s process of successive approximations, leading to an exact inversion
formula given by a infinite series of iterated kernels; see [104]. In this chapter, we numerically
invert Volterra-type integral equation of the first kind adopting a numerical method given in
[107] (see also [77]) and combine it with a truncated singular value decomposition to recover
the Fourier coefficients of the unknown function from the circular or elliptical Radon transform
data. The same method can also be implemented for numerical inversion of Volterra-type
integral equation of the second kind proved in the papers [5, 6], but the numerical inversion is
less accurate (see Remark 8.3.1). The numerical implementation of the exact inversion formula

1The contents of the chapter are in the paper [86] accepted by JMIV, Springer
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for the Volterra integral equation of the second kind involving an infinite series of iterated kernels
is very unstable and implementing them is still an open problem. To the best of our knowledge,
ours is the first successful numerical inversion of circular and elliptical Radon transforms for
the circular geometry of acquisition with radially partial data, the theoretical results of which,
as already mentioned, were presented in [5] and [6].

8.2 Theoretical background

We consider two generalized Radon transforms in the plane: (a) Circular Radon transform and
(b) Elliptical Radon transform.

Circular Radon transform

Let ∂B(0, R) denote the circle of radius R centered at (0, 0) and parametrized by

γ(φ) = (R cosφ,R sinφ) : φ ∈ [0, 2π].

Let ρ > 0 and define the circle of radius ρ centered at γ(φ):

C(ρ, φ) = {x ∈ R2 : |x− γ(φ)| = ρ}

Let (r, θ) denote the standard polar coordinates on the plane and let f(r, θ) be a compactly
supported function in R2. The circular Radon transform of f over the circle C(ρ, φ) is defined
as

gC(ρ, φ) = RCf(ρ, φ) =

∫
C(ρ,φ)

f(r, θ)ds.

Here ds is the arc-length parametrization on the circle C(ρ, φ). See Figure 8.1a.

Elliptical Radon transform

We consider ∂B(0, R) as before and let α ∈ (0, π/2) be a fixed angle. The ellipses of interest to us
are the ones with their foci on ∂B(0, R) separated by the polar angle 2α. Define a = R sinα and
b = R cosα. Given (ρ, φ), we consider the foci locations to be γf1(φ) = (R cos(φ−α), R sin(φ−
α)) and γf2(φ) = (R cos(φ+ α), R sin(φ+ α)). Now consider the ellipse

E(ρ, φ) = {x ∈ R2 : |x− γf1(φ)|+ |x− γf2(φ)| = 2
√
ρ2 + a2}.

The elliptical Radon transform of f over E(ρ, φ) is defined as

gE(ρ, φ) = REf(ρ, φ) =

∫
E(ρ,φ)

f(r, θ)ds,

where ds is the arc-length parametrization on E(ρ, φ). See Figure 8.1b.
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∂B(0, R)
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ρ

C(ρ, φ)

(a)

∂B(0, R)

R
φ

E(ρ, φ)

α

ρ

(b)

Figure 8.1: Circular and elliptical Radon transform set-up

The transforms RC and RE with radially partial data were considered in [5, 6] and explicit
inversion formulas were given there, which we now recall. The proof of each of the results below
involves a Volterra-type integral equation of the first kind with a weakly singular kernel. As
already mentioned in the introduction, the explicit inversion formulas given in [5, 6] involved
transforming such an integral equation to one of the second kind with the singularity removed.
The inversion formulas are given as an infinite series involving iterated kernels. Since we perform
numerical inversion of Volterra-type integral equations of the first kind, we limit ourselves to
recalling only them here. However, see Remark 8.3.1.

We expand f(r, θ), gC(ρ, φ) and gE(ρ, φ) into a Fourier series:

f(r, θ) =
∞∑

n=−∞
fn(r)einθ, gC(ρ, φ) =

∞∑
n=−∞

gCn (ρ)einφ, gE(ρ, φ) =
∞∑

n=−∞
gEn (ρ)einφ

In the following results, fn is related to gCn or gEn through a Volterra-type integral equation
of the first kind. We will use the superscripts Int, Ext or Both to denote the cases when the
support of the function is an annular region in the interior, exterior or on both sides of the
circle ∂B(0, R), respectively.

Theorem 8.2.1 (Functions supported in an annulus interior to ∂B(0, R)). [5, 6]

1. [5, Thm. 1](Circular transform) Let 0 < ε < R and f(r, θ) in polar coordinates be an
unknown continuous function in polar coordinates supported inside the annular region
A(ε, R) = {(r, θ) : r ∈ (ε, R), θ ∈ [0, 2π]}. If RCf(ρ, φ) is known for φ ∈ [0, 2π] and ρ ∈
[0, R− ε], then f(r, θ) can be uniquely recovered in A(ε, R).

2. [6, Thm. 3.1](Elliptical transform) Let f(r, θ) be a continuous function supported inside
the annulus A(ε, b). Suppose REf(ρ, φ) is known for all φ ∈ [0, 2π] and ρ ∈ (0, b − ε),
then f(r, θ) can be uniquely recovered.

In the above theorems, the relation between the nth Fourier coefficient of the function f
and the nth Fourier coefficient of the circular Radon transform gC,Int

n and the elliptical Radon
transform gE,Int

n involve the Volterra-type integrals which are given below.

1. Circular case, see [5]

gC,Int
n (ρ) =

ρ∫
0

Kn(ρ, u)Fn(u)√
ρ− u

du, (8.1)
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where

Fn(u) = fn(R− u), Tn(x) = cos(n arccos(x))

Kn(ρ, u) =
4ρ(R− u)Tn

[
(R−u)2+R2−ρ2

2R(R−u)

]
√

(u+ ρ)(2R+ ρ− u)(2R− ρ− u)
. (8.2)

2. Elliptical case, see [6]

gE,Int
n (ρ) =

ρ∫
0

Kn(ρ, u)Fn(u)√
ρ− u

du, (8.3)

where

Fn(u) = fn(b− u)

Kn(ρ, u) =
K̃n(ρ, b− u)

√
ρ− u√

a2 + bρ−
√
R2ρ2 + a2(R2 − (b− u)2)

(8.4)

K̃n(ρ, r) =

2arTn

(
b(ρ2+a2)−ρ

√
R2ρ2+a2(R2−r2)

a2r

)
√
a2 + (

√
R2ρ2 + a2(R2 − r2)− bρ)

×

√
2R2ρ2 + a2(R2 − r2)− 2bρ

√
R2ρ2 + a2(R2 − r2)√

R2ρ2 + a2(R2 − r2)
. (8.5)

Theorem 8.2.2 (Functions supported in an annulus exterior to ∂B(0, R)). [5, Thm. 6 ]
(Circular transform) Let f(r, θ) be a continuous function supported inside the annulus centered
at 0: A(R, 3R) = {(r, θ) : r ∈ (R, 3R), θ ∈ [0, 2π]}. If RCf(ρ, φ) is known for φ ∈ [0, 2π] and
ρ ∈ [0, R1], where 0 < R1 < 2R then f(r, θ) can be uniquely recovered in A(R,R1).

In the above theorem, the relation between the nth Fourier coefficient of the circular Radon
transform gC,Ext

n and the nth Fourier coefficient of the function f is given by [5]

gC,Ext
n (ρ) =

ρ∫
0

Kn(ρ, u)Fn(u)√
ρ− u

du, (8.6)

where

Fn(u) = fn(R+ u)

Kn(ρ, u) =
4ρ(R+ u)Tn

[
(R+u)2+R2−ρ2

2R(R+u)

]
√

(u+ ρ)(2R+ ρ+ u)(2R+ u− ρ)
. (8.7)

Theorem 8.2.3 (Functions with support on both sides of ∂B(0, R)). [6]

1. [6, Thm. 3.3](Circular transform) Let f(r, θ) be a continuous function supported inside
the disc D(0, R2) with R2 > 2R. Suppose RC(ρ, φ) is known for all φ ∈ [0, 2π] and
ρ ∈ [R2 − R,R2 + R], then f(r, θ) can be uniquely recovered in the annulus A(R1, R2)
where R1 = R2 − 2R.

2. [6, Thm. 3.4 ](Elliptical Radon transform) Let f(r, θ) be a continuous function supported
inside the disc D(0, R2) with R2 > 2b. Suppose RE(ρ, φ) is known for all φ ∈ [0, 2π] and
ρ ∈ [R2−b, R2+b], then f(r, θ) can be uniquely recovered in A(R1, R2) where R1 = R2−2b.
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In the above theorems, the relation between the nth Fourier coefficient of the function f
and the nth Fourier coefficient of the circular Radon transform gC,Both

n and the elliptical Radon
transform gE,Both

n are given below.

1. Circular case, see [6]

gC,Both
n (R2 +R− ρ) =

ρ∫
0

Kn(ρ, u)Fn(u)√
ρ− u

du, (8.8)

where

Fn(u) = fn(R2 − u)

Kn(ρ, u) =
4(R2 +R− ρ)(R2 − u)Tn

(
(R2−u)2+R2−(R2+R−ρ)2

2(R2−u)R

)
√

(ρ− u)(2R2 − ρ− u)(2R+ u− ρ)(2R+ 2R2 − ρ− u)
. (8.9)

2. Elliptical case, see [6]

gE,Both
n (R2 + b− ρ) =

ρ∫
0

Kn(ρ, u)Fn(u)√
ρ− u

du, (8.10)

where

Fn(u) = fn(R2 − u)

Kn(ρ, u) =
K̃n(R2 + b− ρ,R2 − u)

√
ρ− u√

a2 + b(R2 + b− ρ)−
√
R2(R2 + b− ρ)2 + a2(R2 − (R2 − u)2)

(8.11)

K̃n(ρ, r) =

2arTn

(
b(ρ2+a2)−ρ

√
R2ρ2+a2(R2−r2)

a2r

)
√
a2 + (

√
R2ρ2 + a2(R2 − r2)− bρ)

×

√
2R2ρ2 + a2(R2 − r2)− 2bρ

√
R2ρ2 + a2(R2 − r2)√

R2ρ2 + a2(R2 − r2)
. (8.12)

8.3 Numerical Algorithm

In this section, we describe the numerical scheme used to invert the integral equations listed in
the previous sections.

8.3.1 Fourier coefficients of the circular and elliptical Radon data in the
angular variable

Since the functions are real, for reasons of computational efficiency, we compute the modified
discrete fast Fourier transform (FFT) of gC(ρ, φ) in φ for a fixed ρ ∈ [ε, 1 − ε] as follows [79].
The procedure for gE is very similar.

1. Let N be even and {φ1, φ2, · · · , φN} be a discretization of φ. We break the array gC(ρ, φk)
for 1 ≤ k ≤ N into two equal length arrays, A for the odd numbered k and B for the
even numbered k. In other words, we let A = {gC(ρ, φ2j−1)} and B = {gC(ρ, φ2j)} for
j = 1, 2, · · · , N/2.

2. We then create a complex array hcρ(j) = A(j) + iB(j), j = 1, 2, · · · , N/2.
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3. Next we perform a discrete FFT on hcρ to get ĥcρ(n), n = 1, 2, · · · , N/2.

4. The Fourier series of gC in the φ variable is then given by

gCn (ρ) =


1
2

{(
ĥcρ(n) + ĥcρ(

N
2 − n+ 2)

)
−i
(
ĥcρ(n)− ĥcρ(N2 − n+ 2)

)
· e

2πi(n−1)
N

}
, for n = 1, · · · , N2 + 1

ĥcρ(N − n+ 2), n = N
2 + 2, · · · , N.

8.3.2 Trapezoidal product integration method [107]

The next step is to solve the integral equation of the form

gn(ρ) =

∫ ρ

0

Fn(u)Kn(ρ, u)√
ρ− u

du, (8.13)

Under some assumptions on the kernel Kn and the function gn, it is known that the integral
equation (8.13) has a unique continuous solution Fn.

Theorem 8.3.1 (Existence and uniqueness of solution). [106] The integral equation (8.13) has
a unique continuous solution Fn(t) for t ∈ [0, R] under the following assumptions:

1. The functions

Kn(t, u) and
∂

∂t
Kn(t, u)

are continuous 0 ≤ u ≤ t ≤ R,

2. Kn(t, t) 6= 0 for all t ∈ [0, R],

3. The function

Gn(t) =
∂

∂t

∫ t

0

gn(s)

(t− s)1/2
ds

is continuous for t ∈ [0, R].

Under the assumptions of the theorem and using the method of kernel transformation [106,
§50], one can transform Volterra equation of the first kind to Volterra equation of the second
kind which has a unique solution (see [106, §3]). This derivation was used in the results of [5, 6]
to provide analytical inversion formulas for a class of circular and elliptical Radon transforms
with radially partial data. Such an exact inversion formula, as it turns out, is numerically
unstable. Therefore, we approach the numerical inversion problem by solving (8.13) directly.
We use the so-called trapezoidal product integration method proposed in [107]; see also [77].
For the sake of completeness, we briefly sketch this method below.

Rewrite (8.13) as

g̃n(ρ) =

∫ ρ

0

kn(ρ, u)√
ρ− u

Fn(u)du (8.14)

where

kn(ρ, u) =
Kn(ρ, u)

Kn(ρ, ρ)
, g̃n(ρ) =

gn(ρ)

Kn(ρ, ρ)
.

Let M be a positive even integer and ρl = lh, l = 0, · · · ,M and h = R−ε
M be a discretization of

[0, R− ε]. From (8.14) we have

g̃n(ρi) =
i∑

k=1

∫ ρk

ρk−1

kn(ρi, u)√
ρi − u

Fn(u)du
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In the sub-interval [ρk−1, ρk], we approximate Fn(u)kn(ρi, u) by a linear function taking the
values Fn(ρk−1)kn(ρi, ρk−1) and Fn(ρk)kn(ρi, ρk) at the endpoints ρk−1 and ρk, respectively.
This is given by

Fn(u) kn(ρi, u) ≈ Fnk−1( kn(ρi, ρk−1)
ρk − u
h

+ Fnk kn(ρi, ρk)
u− ρk−1

h
.

Hence

g̃n(ρi) ≈
i∑

k=1

∫ ρk

ρk−1

1√
ρi − u

{Fnk−1kn(ρi, ρk−1)
ρk − u
h

+ Fnk kn(ρi, ρk)
u− ρk−1

h
}du.

A straightforward computation gives∫ ρk

ρk−1

ρk − u√
ρi − u

du = −4

3
h3/2

{
(i− k + 1)3/2 − (i− k)3/2 + 2(i− k + 1)1/2

}
.

In a similar way∫ ρk

ρk−1

u− ρk−1√
ρi − u

du =
4

3
h3/2

{
(i− k + 1)3/2 − (i− k)3/2 − 2(i− k)1/2

}
.

Hence

g̃n(ρi) =
√
h

i∑
k=1

(
−4

3
{(i− k + 1)3/2 − (i− k)3/2}+ 2(i− k + 1)1/2

)
× Fn(ρk−1)kn(ρi, ρk−1)+(

4

3
{(i− k + 1)3/2 − (i− k)3/2} − 2(i− k)1/2

)
× Fn(ρk)kn(ρi, ρk).

(8.15)

Recall that Fn(R− t) = fn(t) and because of the assumptions on the support of f , we have that
Fn(0) = 0 for all n. Then (8.15) reduces to

√
h
{ i∑
k=1

ai−k kn(ρi, ρk) Fn(ρk)
}

= g̃n(ρi), i = 1, · · · ,M (8.16)

where

a0 =
4

3
, ai =

4

3
{(i+ 1)3/2 − 2i3/2 + (i− 1)3/2}, i = 1, · · · ,M.

The following theorem states the error estimate for the solution of the integral equation.

Theorem 8.3.2 (Error Estimates). [107, Thm. 4.1] Let F exact
n be the C3 solution of (8.14) in

[0, R− ε] and Fn be the solution to (8.16). Then

max
0≤i≤M

‖F exact
n (ρi)− Fn(ρi)‖ = O(h2). (8.17)

Equation (8.16) can be written in matrix form as

AnFn = g̃n, (8.18)

where

Fn =

 Fn(ρ1)
...

Fn(ρM )

 , g̃n =

 g̃n(ρ1)
...

g̃n(ρM )

 (8.19)
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and

An(i, k) =

{
ai−k
√
h kn(ρi, ρk) 1 ≤ k ≤ i

0 k > i.
(8.20)

Equation (8.18) has a unique solution because the eigenvalues of the matrix An are 4
3

√
h >

0. Figure (8.2) shows the condition number of An for different values of n. Since An is ill-
conditioned for several values of n we use the Truncated Singular Value Decompostion (TSVD)
[42] to solve the matrix equation.
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Figure 8.2: Plot of condition number of An for n ∈ [1, 200]

8.3.3 Truncated singular value decomposition (TSVD)

In order to solve (8.18), we begin with the SVD of An. This is given by An = UDV T , where U
and V are orthogonal matrices whose columns are the eigenvectors of AnA

T
n and ATnA respec-

tively and D is a diagonal matrix consisting of the singular values of A, that is, the square root
of the eigenvalues of ATnAn in descending order represented by σi, i = 1, · · · ,M . Now we set

An,r = UDrV
T and A−1

n,r = V D−1
r UT

where Dr and D−1
r are diagonal matrices with diagonal entries

(Dr)ii =

{
Dii if i ≤ r
0 otherwise.

(
D−1
r

)
ii

=

{
1
Dii

if i ≤ r
0 otherwise.

The matrix An,r approximates An, where 1 ≤ r ≤M is the rank of the matrix An,r, as follows.
Let us define the 2-norm of a matrix A by

‖A‖2 = sup
x6=0

‖Ax‖2
‖x‖2

. (8.21)

It is well known that ‖A‖2 is the largest singular value of A [47]. We have that the condition
number κ(An,r) of An,r is given by κ(An,r) = σ1

σr
[42].
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Figure 8.3: Relation between condition number of An,r and the error in 2-norm from the original
matrix An, respectively for n = 10, 80, 120, 180. The dots on the figures correspond to the half-
rank approximation.

Furthermore ‖An−An,r‖2 = σr+1. Therefore An,r for r large, would be a good approximation
to An, but with high condition number, whereas if r is small, the condition number would be
small but the error in the approximation ‖A−An,r‖2 would be large.

Figure 8.3 shows the relation between the condition number of the truncated matrix An,r
and the error ‖An − An,r‖2, where the norm is defined by (8.21), for the Fourier coefficients
n = 10, 80, 120 and 180. For simplicity we considered the matrix arising out of the integral
equation (8.1). The other cases are similar.

Due to the competing considerations mentioned above, in all our reconstructions, we chose
half-rank approximations (r = M/2, where recall that M is the number of discretizations
in ρ) to An for all n. The condition number of the approximating matrix An,M/2 in all the
cases was found to be less than 10. Note that our choice of approximation was independent
of the Radon data. Half-rank approximations gave good reconstructions for both the circular
and elliptical Radon transforms considered here; see §8.4. We also tested the scheme with rank
approximations r � M

2 and r � M
2 and found the results to be worse compared to the half-rank

approximation case. See Figures 8.6a and 8.6b in §8.4.

8.3.4 Numerical solution of Volterra-type integral equation of second kind

The method of the previous section can also be applied to Volterra-type integral equations of
the second kind. It again leads to a non-singular matrix An with high condition number.

Given a Volterra integral equation of the first kind,

gn(ρ) =

ρ∫
0

Kn(ρ, u)Fn(u)√
ρ− u

du,

one can transform this into a Volterra-type integral equation of the second kind [106] which is
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given by

Gn(ρ) = Fn(ρ) +

∫ ρ

0
Ln(ρ, u)Fn(u)du (8.22)

where

Gn(ρ) =
1

πKn(t, t)

d

dρ

ρ∫
0

gn(u)√
ρ− u

du

and

Ln(ρ, u) =
1

πKn(ρ, ρ)

d

dρ

ρ∫
u

Kn(t, u)√
t− u

√
ρ− t

dt.

We can apply the trapezoidal product integration method to (8.22) with the discretization
ρl = lh, l = 0, · · · ,M and h = R−ε

M of [0, R − ε] and we arrive at the following matrix
equation:

(I +An)Fn = Gn (8.23)

where Fn and Gn are similar to (8.19) and

An(i, k) =

{
akLn(ρi, ρk) 1 ≤ k ≤ i
0 j > i

(8.24)

with ak = h, for k = 1 · · · i− 1 and ai = h/2.

Remark 8.3.1. One could apply the numerical algorithm given in this paper to the matrix
equation (8.24). However, the evaluation of Gn and Ln involves calculating derivative of an
integral which leads to numerical instabilities and hence a high percentage of error. Furthermore,
numerical computation of Gn and Ln is time consuming.

8.4 Numerical Results

We now show the results of the numerical computations performed for the circular and elliptical
Radon transforms considered in Theorems 8.2.1, 8.2.2 and 8.2.3. The trapezoidal integration
method requires the function to be recovered to be C3 for O(h2) convergence of the approxi-
mate solution to the actual one (see Theorem 8.3.2). Nevertheless, we tested our algorithm on
functions with jump singularities and it gave good reconstructions. We discretized φ ∈ [0, 2π]
into 400 equally spaced grid points and ρ ∈ [0, R− ε] into 400 equally spaced grid points for all
the computations. Additionally, we tested the numerical algorithm on 1000 equally spaced grid
points in the ρ space for the computations in §8.4.1 and §8.4.1. In all cases we take R = 1 unless
mentioned otherwise. Besides analysing the physical properties of the reconstructed image, we
also evaluate the relative L2 error percentage between the actual and the reconstructed images,
which is defined as

Relative L2 error percentage =
‖frec − fex‖
‖fex‖

∗ 100%

where fex = fex(xi, yj) and frec = frec(xi, yj), i, j = 1 · · ·M represents the discretized matrix

for the exact function and the reconstructed function respectively, ‖f‖ = 1
M

√∑M
i=1

∑M
j=1 f

2
ij

and f = f(xi, yj).

Remark 8.4.1. The inversion formulae presented here are subtle. We are interested in validat-
ing the analytical representation of the formulae. Since we do not have access to real data, we
generate our own synthetic Radon data. To do so, we need to integrate the function to be recov-
ered along circles C(ρ, φ) or ellipses E(ρ, φ). In this context, we choose a phantom which has
an analytic representation and then numerically integrate along given circles using trapezoidal
method with 200 points.
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(a) (b)

(c) (d)

Figure 8.4: Results for circular Radon transform data for a function supported in an interior
annulus of ∂B(0, R). Figure 8.4a shows the actual Shepp-Logan phantom and Figures 8.4b,
8.4c and 8.4d show the reconstructed images with 400, 400 with 10% added Gaussian noise,
and 1000 equally spaced discretizations in ρ, respectively.

8.4.1 Functions supported in an interior annulus

This corresponds to the case when the object we are interested in reconstructing are supported in
an annulus centered at 0 of the circle ∂B(0, R) and the circular and elliptical Radon transforms
are along circles (ellipses) with center (foci) on ∂B(0, R), see Theorem 8.2.1. For the circular
Radon transform case, the matrix An consists of entries coming from the kernel equation (8.2),
whereas for the elliptical Radon transform case, the matrix entries come from (8.4).

In both the circular and elliptic transform cases discussed below, we notice a good recovery
of the image near the origin which is a point of singularity. There is reduction in the number
of artifacts as we increase the number of discretization points and hence the relative L2 error
decreases with increasing refinement.

Circular Radon transform data

Figure 8.4a shows the Shepp-Logan phantom which is recovered by numerical inversion in
Figures 8.4b, 8.4c and 8.4d using 400 (without and with 10 % Gaussian noise) and 1000 equally
spaced discretizations in ρ, respectively. The relative L2 errors between Figures 8.4a and 8.4b,
Figures 8.4a and 8.4c, and Figures 8.4a and 8.4d are 18.6%, 24.2% and 10.1%, respectively. A
smooth version of the Shepp-Logan phantom is shown in Figure 8.5 which is also recovered well
by the inversion formula. The relative L2 error between these images is 5.7%, showing that the
algorithm performs better with smooth initial data.

To justify the rationale behind half-rank approximations, we tested the algorithm with rank
approximations r = M/8 and r = M/1.5. The results are shown in Figures 8.6a and 8.6b
respectively. The relative L2 error for the first case was 65.8% and for the second case was
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(a) (b)

Figure 8.5: Results for circular Radon transform data for a function supported in an interior
annulus of ∂B(0, R). Figure 8.5a shows a smooth version of the Shepp-Logan phantom and
Figure 8.5b shows the reconstructed image.

280.1%. This suggests rank approximations too far away from half-rank approximations can
either lead to loss of data or lead to blow-offs which results in improper reconstruction.

Elliptical Radon transform data

Figure 8.7 shows the actual and reconstructed images with 400 and 1000 equally spaced dis-
cretizations in ρ from elliptical Radon transform data using the numerical algorithm of Section
8.3 based on the result of Part 2 of Theorem 8.2.1.

For the computations we assumed that an object is placed inside the annulus A(ε, b) where
b = R cosα with α = 30◦ is the length of the semi-minor axis. The resulting integral equation
to be solved is given by (8.3) with the kernel Kn(ρ, u) given by (8.4). We see that all the objects
in the image have been reconstructed even with the coarser discretization of 400 points. The
relative L2 errors between the Figures 8.7a and 8.7b, and between the Figures 8.7a and 8.7c are
14.2% and 10.6%, respectively.

8.4.2 Functions supported inside A(R, 3R)

In this test case, we use circular Radon transform data for functions supported inside A(R, 3R).
The integral equation to be considered in this case is (8.6) with the kernel Kn(ρ, u) as defined
in (8.7). The actual and reconstructed images are shown in Figure 8.8. Microlocal analysis
arguments show that the entire circumference of the two circles cannot be constructed stably
with the given circular Radon transform data [40, 41, 39, 81]. We see the presence of an increased
number of artifacts in constrast to the interior case (see §8.4.1). The image reconstructed is
consistent with this analysis. The relative L2 error between these images is 35.5%. While the
error is large, the number and location of the objects in the image are recovered.

8.4.3 Functions supported on both sides of ∂B(0, R)

Circular Radon transform data for functions supported on both sides of ∂B(0, R)

We considered a function supported inside the annulus A(R1, R2) where R2 > 2R and R1 =
R2−2R (See Figure 8.9a). In the computations we chose R = 1.47, R2 = 3. Therefore R1 = 0.06.
The resulting integral equation is given by (8.8) with the kernel Kn(ρ, u) defined by (8.9). The
actual and reconstructed images are shown in Figure 8.9. As in the Figure 8.8, microlocal
analysis of the given circular Radon transform data shows that certain parts of boundary of the
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(a) (b)

Figure 8.6: Results for circular Radon transform data for a function supported in an interior
annulus of ∂B(0, R). Figure 8.6a shows the reconstruction of smooth version of the Shepp-Logan
phantom with r = M/8 and Figure 8.6b shows the reconstruction with r = M/1.5. Figure 8.6a
reveals incomplete reconstruction due to loss of data whereas Figure 8.6b reveals blow-off in the
solution.

(a)

(b) (c)

Figure 8.7: Results of elliptical Radon transform data for a function supported in an interior
annulus of ∂B(0, R). Figure 8.7a shows the actual Shepp-Logan phantom and Figures 8.7b
and 8.7c show the reconstructed images with 400 and 1000 equally spaced discretizations in ρ,
respectively.
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(a) (b)

Figure 8.8: Results for circular Radon transform data for a function supported in an annular
region of C(R, 3R). The circular Radon transform data is taken over circles centered on the
inner circle. Figure 8.8b shows the reconstructed image.

disc outside the dotted circle cannot be stably reconstructed. Note that the boundary of inner
disc is reconstructed well. The relative L2 error between these images is 32.1%.

(a) (b)

Figure 8.9: Simulation with circular Radon transform data (Part 1 of Thm 8.2.3) for a function
supported on both sides of the circle ∂B(0, R) shown by the dotted circle in Figure 8.9a. Figure
8.9a shows the actual image and Figure 8.9b shows the reconstructed image.

Elliptical Radon transform data for functions supported on both sides of ∂B(0, R)

Finally, we tested our algorithm for Part 2 of Theorem 8.2.3. We considered a function placed
inside the annulus A(R1, R2) where we chose the angle α = 20◦, R = 1.47 and R2 = 3. Then
R1 = R2 − 2b = R2 − 2R cos 20◦ ≈ 0.237. We tested the numerical algorithm on the integral
equation (8.10) with the kernel Kn(ρ, u) given by (8.11) and the results are shown in Figure
8.10. Same microlocal analysis reasons [3] as in Figure 8.9 applies for this case as well. The
relative L2 error between these images is 31.8% without noise and with 10% Gaussian noise,
the relative L2 error is 52.2%.
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(a) (b)

(c)

Figure 8.10: Simulation with elliptical Radon transform data (Part 2 of Theorem8.2.3) for a
function supported on both sides of the circle ∂B(0, R) shown by the dotted circle in Figure
8.10a. Figure 8.10a shows the actual image, Figure 8.10b and Figure 8.10c show the recon-
structed image without and with 10% Gaussian noise, respectively.
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8.5 Computational Time

We now demonstrate the computational efficiency of our developed algorithm by demonstrating
the computational times taken for various reconstructions. We first note that in Section 8.4
we state that the number of angular discretizations in φ is fixed to be 400. We only vary the
number of radial discretizations ρ to be either 400 or 1000. This is based on the reasoning that
since a ray is continuous, given an entry point on the circle ∂B(0, R), it can sweep any set of
points in the radial direction. But the number of such entry points determines the number of
rays entering the object, eg. a body, which might be restricted depending on the scanner or the
condition of the object. Hence we can choose any number of radial discretizations but only a
fixed number of angular discretizations.

The reconstruction of the function f can be divided into two phases

1. Pre-processing step.

2. Inversion algorithm step.

In the pre-processing step, we compute the inverse of the matrix An given in (8.18) for n =
1, . . . , N/2+1 using the half-rank truncated SVD inversion technique described in Section 8.3.3.
The inversion algorithm step consists of the Fourier transform of the Radon data, computing the
solution fn for each n, evaluating f using the inverse Fourier transform and finally displaying
the results. The computations are performed in MATLAB with machine configuration of 4 GB
RAM, 2.5 GHz I3-processor and 2 clusters.

Phantom Support RT Type Grid Pre-processing Inversion algorithm

Shepp-Logan Interior Circular 400 610.1 sec 44.4 sec
Shepp-Logan Interior Circular 1000 4164.7 sec 55.8 sec

Smooth Shepp-Logan Interior Circular 400 612.2 sec 45.4 sec
Shepp-Logan Interior Elliptical 400 611.7 sec 45.1 sec
Shepp-Logan Interior Elliptical 1000 4163.8 sec 56.4 sec

2 Disks Combined Elliptical 400 611.5 sec 45.4 sec

Table 8.1: Time taken for the pre-processing step and inversion algorithm for the two types of
discretizations of ρ. RT type stands for the type of Radon transform.

Table 8.1 presents the computational times for the various experiments performed. It can
be seen that the computational time depends on the number of radial discretizations of ρ rather
than the type of transforms or support of the reconstructed function f . We can see from Table
8.1, that the computational time taken for the pre-processing step is quite large. But since this
step is independent of data, given the number of angular discretizations N , this step is computed
once, stored in memory and can be used for inversion of any kind of Radon data. This makes
the inversion procedure quite fast which can be seen from the time taken for the inversion
algorithm step running at less than a minute even for 1000 discretizations on a comparatively
slow machine. With the fast computing machines, one can attain high speeds. Such a task is
beyond the scope of this work and would be considered in future works.

8.6 Conclusions

We have developed a numerical technique to solve the inversion formulas for circular and el-
liptical Radon transforms arising in some imaging applications. The inversion formulae and
the proposed numerical scheme have been demonstrated to give good reconstructions on some
standard test problems involving both discontinuous and smooth images. While the absolute
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errors in the reconstructed image are large, especially for discontinuous images, what is more
important is that the objects in the image are properly distinguished by the current method.
The numerical algorithm requires the solution of ill-conditioned matrix problems which is ac-
complished using a truncated SVD method. The matrices and the SVD can be constructed
in a pre-processing step and re-used repeatedly for the subsequent computations leading to an
efficient and fast algorithm.
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Chapter 9

Conclusion

The main aim of the thesis was to study some inverse problems related to fluid flows and
tomography. In the field of fluid flows, we build methods to determine the two dimensional
velocities of a fluid by capturing the movement of the objects in the fluid. Such a method could
be applied to determine the motion of clouds using data from the geo-stationary satellites. This
information could be useful for farmers,meterologists, etc. In the field of tomography, efficient
numerical inversion techniques is presented to reconstruct a function from its circular and elliptic
Radon transforms. Such a work is relevant in various imaging modalties like ultrasound imaging,
radar imaging and sonar imaging. This chapter will summarize the main contributions of the
thesis and will also hint at future work to be done.

9.1 Contributions of the thesis

9.1.1 Methodology

1. In the second chapter, the classical Horn and Schunck method was revisited and used
to determine fluid flow velocities by minimizing the Horn-Schunck functional along with
the two constraints: the data conservation constraint and the smoothness constraint. We
pointed out with illustrations why they were needed. A finite difference iterative scheme
was used and the method was used to recover a simple constant flow.

2. In the third chapter, a unique minimizer of the Horn-Schunck functional was shown along
with some regularity results. Stability estimates of the minimizer was shown in terms of
the given image data which suggested that the velocity field obtained depends continuously
on the image derivatives, the domain of definition and the smoothing parameter.

3. In the fourth chapter, fluid flow velocities of a constant flow used in the first chapter was
recovered by minimizing the Horn-Schunck functional and using numerical implementation
based on the finite element method. The results of the finite difference method from the
first chapter and the finite element method in this chapter were compared.

4. In the fifth chapter, our aim was to track steady state incompressible fluid flows. We
additionally assumed that the underlying fluid flow is a potential flow and tried to recover
it by minimizing a functional. A finite element numerical method was used and tests were
done to recover two flows: the first one being a constant flow and the second one being a
flow due to point vortex with source of the vortex outside the domain of definition.

5. In the sixth chapter, a new method was devised to track steady state incompressible fluid
flows. Based on a constraint based minimization method with incompressibility as the
only constraint, the method is used to track flows governed by steady state Stokes and
Navier-Stokes equations with known boundary conditions.
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6. In the seventh chapter, a new method was devised to track time-dependent incompressible
vortex flows. Again a constraint based minimization technique was used with unsteady
Euler or Navier-Stokes flow constraints and tested with two vortex flows.

7. In the final chapter, an efficient numerical inversion technique was presented to recover a
function from its circular and elliptic Radon transforms. The inversion technique is used
to reconstruct several phantoms.

9.1.2 Results

1. After comparing the finite difference and the finite element method implemented in the
second and fourth chapters, it was found that the finite element method was compara-
tively better than the finite difference method. With this idea, we went about tracking
incompressible flows using the finite element method. In the third chapter, existence and
uniqueness of minimizer of the Horn-Schunck functional was shown which was necessary
for efficient numerical implementation.

2. In the fifth chapter, where we attempt to track incompressible flows, the flow was as-
sumed to be potential. It was found from the numerical results that the recovery was
not that good. The reason pointed out was lack of sufficient information about the flow
in terms of the boundary conditions assumed. In view of this problem, a new method
was implemented in the sixth chapter, assuming incompressibility condition and known
boundary condition. A nice outcome of the method was that Stokes flow forced by a po-
tential was recovered almost exactly irrespective of the smoothing parameter. But since
steady state flows were considered, flow dynamics over various times was missing which re-
sulted in the method not being able to capture non-linear effects like vortices generated by
Navier-Stokes equations. In an attempt to modify this shortcoming, another new method
was proposed in chapter seven which could efficiently capture vortex flows governed by
unsteady incompressible Euler or Navier-Stokes equations.

3. In the final chapter, the numerical inversion algorithm was shown to be fast because
of a pre-processing step and also accurate even in the presence of noise. A truncated
SVD technique was used and based on the balance between conditioning and error in
approximation of the system, half rank approximations were suggested. The results show
good reconstructions for several phantoms.

9.1.3 Inference

The methods proposed for tracking incompressible fluid flows using optical flow techniques are
simple yet quite efficient. They are not computationally expensive and accurate. The methods
have been studied both from the theoretical and numerical point of view. These methods can be
extended further to track compressible flows. For image reconstruction, the numerical algorithm
suggested was used to reconstruct a function from its circular and elliptic Radon transforms in
2D. Such a method could also be used in reconstructing a function from 3D spherical Radon
transforms as well as other types of Radon transforms based on Fourier techniques.

9.2 Future work

Our future work is aimed at a study of more complicated inverse problems in the field of
fluid flows and tomography to account for various other assumptions besides the ones already
considered here. We would like to create better methods so that we provide the best information
to the farmers, meterologists and the doctors who work hard for the sake of the benefit of the
world to make it a better and safer place to live in.
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Appendix A

Rate of change of image brightness

Consider a patch of brightness pattern that is displaced a distance δx in the x-direction and δy
in the y-direction in time δt. The brightness of the patch is assumed to remain constant so that

E(x, y, t) = E(x+ δx, y + δy, t+ δt)

Expanding the right hand side about the point (x, y, t) we get,

E(x, y, t) = E(x, y, t) + δx
∂E

∂x
+ δy

∂E

∂y
+ δt

∂E

∂t
+ ε

where ε contains second and higher order terms in δx, δy and δt. After subtracting E(x, y, t)
from both sides and dividing through by δt we have

δx

δt

∂E

∂x
+
δy

δt

∂E

∂y
+
∂E

∂t
+O(δt) = 0

where O(δt) is a term of order δt, and we assume that δx and δy vary as δt. In the limit as
δt→ 0 this becomes

∂E

∂x

dx

dt
+
∂E

∂y

dy

dt
+
∂E

∂t
= 0

which is same as
Et +∇E·U = 0

where U = (u, v) and u = dx
dt , v = dy

dt .
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Appendix B

Existence Of An Unique Global
Minimizer

First we will show that the functional J(U), as given in (6.1), is continuous on Z We use the
following results (See [82] ). Let X be an open set in a normed linear space L with norm ‖.‖.

Theorem B.0.1. Let J : Z → R ∪ {−∞,∞} be a convex functional on X. If J is bounded
from above in a neighborhood of a point U0 ∈ X then it is locally bounded i.e each U ∈ X has
a neighborhood on which J is bounded.

Proof. We first show that if J is bounded above in an ε-neighborhood of some point, it is
bounded below in the same neighborhood. We choose a neighborhood of the point 0. Let
|J(U)| ≤ B ∀U ∈ Nε(0) where Nε(0) is a neighborhood of the origin given by

Nε(0) = {U ∈ X : ‖U‖ < ε}

Since

0 =
1

2
U +

1

2
(−U)

By convexity of J we get,

J(0) ≤ 1

2
J(U) +

1

2
J(−U)

This gives,
J(U) ≥ 2J(0)− J(−U)

Now, ‖U‖ < ε implies ‖ − U‖ < ε.

Therefore
−J(−U) ≥ −B, J(U) ≥ 2J(0)−B

This means J is bounded from below.
Now for proving the theorem, we take J to be bounded from above by B on an ε-neighborhood
N of the origin. We will show J to be bounded in a neighborhood of U ∈ X,U 6= 0. We choose
ρ > 1 so that V = ρU ∈ X and let λ = 1

ρ .Then

M = {W ∈ L : W = (1− λ)Y + λV, Y ∈ N}

is a neighborhood of λV = U with radius (1− λ)ε. Moreover

J(W ) ≤ (1− λ)J(Y ) + λJ(V ) ≤ B + J(V ).

So J is bounded above on M and by he first part of this proof J is bounded below on M .
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Definition B.0.1. A functional J defined on an open set X is said to be locally Lipschitz if at
each U ∈ X there exists a neighborhood Nε(U) and a constant K(U) such that if V,W ∈ Nε(U),
then,

|J(V )− J(W )| ≤ K‖V −W‖Z
If this inequality holds throughout a set Y ⊆ X with K independent of U then we say that J is
Lipschitz on Y .

Theorem B.0.2. Let J be convex on an open set X ⊆ L. If J is bounded from above in a
neighborhood of one point of X, then J is locally Lipschitz in X.

Proof. By Theorem B.0.1, J is locally bounded. So given U0 we may find a neighborhood
N2ε(U0) ⊆ X on which J is bounded, say by M . Then J satisfies the stated Lipschitz condition
on Nε(U0), for if it does not, we may choose U1, U2 ∈ Nε(U0) s.t.

J(U2)− J(U1)

‖U2 − U1‖
>

2M

ε

Then we may choose α > 0 s.t. U3 = U2 + α(U2 − U1) is in N2ε(U0) and ‖U3 − U2‖ = ε.
Because J is convex on the line through U1, U2, U3 , we may use the following inequality,

J(U3)− J(U2)

‖U3 − U2‖
≥ J(U2)− J(U1)

‖U2 − U1‖
>

2M

ε

This gives us J(U3)− J(U2) > 2M , contradicting the fact that |J | ≤M .

Hence J is locally Lipschitz.

Theorem B.0.3. Let J be convex on X. If J is bounded from above in an neighborhood of one
point of X, then J is continuous on X.

Proof. Theorem 6.3.2 implies J is locally Lipschitz, from which continuity follows immediately.

Theorem B.0.4. The functional J as given in (6.1) is continuous

Proof. We will use the Theorem B.0.3 to prove our statement. We assume

‖E‖W 1,∞(Ω) ≤M.

As 0 ∈ Z, we consider a neighborhood of zero given as N1 = {U : ‖U‖Z < 1}. Now

|J(U)| =
∣∣∣∣12
∫

Ω
(U · ∇E + Et)

2 dxdy +
K

2

∫
Ω

[
‖∇u‖2 + ‖∇v‖2

]
dxdy

∣∣∣∣
≤ 1

2

∫
Ω

(U · ∇E + Et)
2 dxdy +

K

2
‖U‖2Z

≤ 1

2

∫
Ω

(
E2
t + (U · ∇E)2 + 2Et(U · ∇E)

)
dxdy +

K

2
‖U‖2Z

Using Hölder’s inequality and L∞ bound on E and its derivatives we get

|J(U)| ≤ 1

2

∫
Ω

[
M2 +M2(u+ v)2

]
dxdy + 2M

(∫
Ω

(∇E)2

)1/2(∫
Ω
U2

)1/2

dxdy +
K

2
‖U‖2Z

≤ M2

2

∫
Ω

[
1 + 2(u2 + v2)

]
dxdy +M(

∫
Ω
M2)1/2‖U‖Z +

K

2
‖U‖2Z

≤ M2

2
(

∫
Ω

1) +M2‖U‖2Z +M2(

∫
Ω

1) +
K

2
‖U‖2Z

<
3M

2
µ(Ω) +M2 +

K

2
( as ‖U‖Z < 1)

<∞.
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where µ(Ω) is the measure of Ω. This gives us J(U) is bounded above in N1. As J is convex
(by Theorem 6.3.5), we have J is continuous for all U ∈ Z (by Theorem B.0.3).

Now we show the existence of the derivative of (6.1).

B.1 Existence Of Gateaux Derivative Of J

Theorem B.1.1. The Gateaux Derivative of (6.1) exists.

Proof. The Gateaux Derivative of J at the point U acting on V is defined as

lim
ε→0

J(U + εV )− J(U)

ε

if it exists and is denoted by J ′(U, V )
By (6.19), the Gateaux Derivative of J is

J ′(U ;V ) =

∫
Ω

(Et + (∇E·U))(∇E·V ) +K

∫
Ω

(∇u1·∇v1) + (∇u2·∇v2)

where
U = (u1, u2), V = (v1, v2).

We will show it is well defined.

Now,

|J ′(U ;V )| ≤ |
∫

Ω
(Et + (∇E·U))(∇E·V )|+K|

∫
Ω

(∇u1·∇v1) + (∇u2·∇v2)|

≤ |
∫

Ω
Et(∇E·V )|+ |

∫
Ω

(∇E·U)(∇E·V )|+K|
∫

Ω
(∇u1·∇v1) + (∇u2·∇v2)|

≤ ‖Et‖H‖∇E·U‖H‖∇E·U‖H‖∇E·V ‖H +K(‖∇u1‖H‖∇v1‖H + ‖∇u1‖H‖∇u1‖H)

By the inequality,(a+ b)2 ≤ (a+ b)2 + (a− b)2 = 2(a2 + b2), we have,

‖∇E.U‖H ≤
[
2‖Ex‖2L∞

∫
Ω
u2

1 + 2‖Ey‖2L∞
∫

Ω
u2

2

] 1
2

≤
[
2 max

{
‖Ex‖2L∞ , ‖Ey‖

2
L∞

}] 1
2 ‖U‖H

Hence we obtain

|J ′(U, V )| ≤ C1(‖U‖H + ‖U‖H‖V ‖H + ‖∇u1‖H‖∇v1‖H + ‖∇u2‖H‖∇v2‖H)

≤ C1‖U‖H + C1[‖U‖2H + ‖∇u1‖2H + ‖∇u2‖2H ]
1
2 .[‖V ‖2H + ‖∇v1‖2H + ‖∇v2‖2H ]

1
2

= C1(‖U‖H + ‖U‖Z ·‖V ‖Z) <∞.

where,

C1 = 2 max
{
‖Ex‖2L∞ , ‖Ey‖2L∞ ,

‖E2
t ‖H .‖Ex‖2L∞

2 ,
‖E2

t ‖H .‖Ey‖2L∞
2 , K2

}
.

So J ′(U, V ) exists and is well defined.
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B.2 Equivalence of J′(U)=0 and existence of a
minimizer for J

Theorem B.2.1. If the Gateaux derivative vanishes at a point U = U0 then it is a minimizer
of (6.1).

Proof. We have,

J(U0 + ε(V − U0)) = J((1− ε)U0 + εV )

≤ (1− ε)J(U0) + εJ(V ) (By Convexity of J)

for any V ∈ J(Ω). Let V − U0 = H. Then,

J(U0 + εH)− J(U0) = ε(J(V )− J(U0))

This gives,
J(U0 + εH)− J(U0)

ε
= J(V )− J(U0)

Taking limit on both sides as ε→ 0, the left hand side goes to J ′(U0) and the right hand side
remains constant as it is independent of ε. But J ′(U0) = 0. So J(V )− J(U0) ≥ 0 ∀V ∈ J(Ω).

Hence J(V ) ≥ J(U0) ∀V ∈ J(Ω). So U0 minimizes J globally.

Theorem B.2.2. If there is a global minimizer of (6.1) at U = U0 then Gateaux Derivative of
J at U0 vanishes.

Proof. Suppose not. Then,

lim
ε→0

J(U0 + εH)− J(U0)

ε
= K

If K > 0 then,
J(U0 + εH)− J(U0)

ε
>
K

2
(for sufficiently small ε).

If ε < 0 then,

J(U0 + εH)− J(U0) < ε
K

2
and hence,

J(U0 + εH) < J(U0) + ε
K

2
< J(U0)

which contradicts the fact that U0 is a global minimizer of J as U0 +εH ∈ J(Ω) when H ∈ J(Ω).

If K < 0 then,
J(U0 + εH)− J(U0)

ε
< 2K (for sufficiently small ε).

If ε > 0 then,
J(U0 + εH)− J(U0) < ε2K.

and hence,
J(U0 + εH) < J(U0) + ε2K < J(U0)

which again contradicts the fact that U0 is a global minimizer of J as U0 + εH ∈ J(Ω) when
H ∈ J(Ω).

So the Gateaux derivative of J at the global minimum point U0 is 0.

So it follows from above that if there is a unique solution of J ′(U) = 0 then that unique
solution is the global minimizer for J , where J is convex.
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Appendix C

Conjugate Gradient method

C.1 Introduction

The solution of the approximate problem: find uh ∈ Vh :

a(uh, vh) = F (vh) ∀vh ∈ Vh (C.1)

can be found using iterative methods. One such method is the conjugate gradient method. We
will discuss about theory of the method in this chapter. Let {φi}Nhi=1 be a basis of Vh. Let A
be the stiffness matrix given by A = (a(φi, φj)) and f = (F (φi)). If a(., .) is symmetric, then
(C.1) is equivalent to the minimization problem

J(uh) = min
vh∈Vh

J(vh) (C.2)

where

J(v) =
1

2
vTAV − vT f, v ∈ RNh . (C.3)

So uh is a solution of (C.2) iff Auh = f .

C.2 Conjugate gradient

Definition C.2.1. The directions w1, w2 ∈ RN are said to be conjugate with respect to the
matrix A if

wT1 Aw2 = 0

In the conjugate gradient method, we construct conjugate directions using the gradient of
the functional. Then the functional is minimized by proceeding along the conjugate direction.
We have the following theorem

Theorem C.2.1. Let w1, w2, ...., wN be n mutually conjugate directions. Let

xk+1 = xk − λkwk

where λk minimizes
φ(λ) = J(xk − λwk), λ ∈ R

J is given in (C.3). When x1 ∈ RN is given, we have

xN+1 = x∗

where
Ax∗ = f
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Proof. Let
rn = −J ′(xn) = f −Axn

Since λk minimizes φ(λ), we have

φ′(λk) = (J ′(xk − λkwk),−wk) = 0

This gives

λk =
(rk)

Twk
(wk)TAwk

(C.4)

Since w1, w2, ....wN are mutually conjugate directions, they are linearly independent. Therefore
there exist αi, i ≤ i ≤ n, such that

x1 − x∗ =

n∑
k=1

αkwk

From this, using the fact that wj are mutually conjugate, we obtain

(x1 − x∗)TAwj = αj(wj)
TAwj

This gives

αj =
(x1 − x∗)TAwj

(wj)TAwj
(C.5)

Using induction we show that
αk = λk

Since Ax∗ = f , we have
r1 = f −Ax1 = A(x∗ − x1)

This shows that
α1 = λ1

Let αi = λi for 1 ≤ i ≤ k. From the definition of xk we obtain,

xk = x1 −
k−1∑
i=1

λiwi = x1

k−1∑
i=1

αiwi,

(by induction hypothesis). Since

(wi)
TAwk = 0, 1 ≤ i ≤ k − 1,

we get
(xk − x1)TAwk = 0

This together with (C.4) and (C.5) shows that

αk = λk

Thus αk = λk for 1 ≤ k ≤ n. The definition of xk implies

xN+1 = x1 −
n∑
i=1

λiwi = x1 −
n∑
i=1

αiwi = x∗
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Now the final theorem in this Appendix is about the iterations to taken for implementing
the conjugate gradient method and the convergence of the method to the actual solution of
Au = f .

Theorem C.2.2. Let x0 ∈ RN . Define w1 = f − Ax1 Knowing xn and wn−1 we define xn+1

and wn by
xn+1 = xn + αnwn

wn = rn + βnwn−1

where

rn = f −Axn, αn =
(rn, wn)

(wn, Awn)
, βn =

(rn, rn)

(rn−1, rn−1)

Then wn are mutually conjugate directions and xN+1 is the unique solution of Ax = f .

Proof. A proof of this theorem can be found in [57].

Remark C.2.1. It can be shown that

xn − xN+1 ∼
(

1−
√
c

1 +
√
c

)n
where c = m

M ,m = inf
x 6=0

(Ax, x)

‖x‖2
,M = sup

x 6=0

(Ax, x)

‖x‖2
. The convergence rate for conjugate gradient

method is faster than the steepest descent method, atleast for quadratic functionals. Also as
condition number of A ∼ C

h2
when Vh ⊂ H1(Ω), so conjugate gradient method is preferred over

steepest descent method for finite elements.
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Appendix D

Using Optical flow to determine
fluid flow

We perform two separate experiments to show the difference in using optical flow method to
track rigid bodies and fluid flows.

(a) (b) (c)

Figure D.1: Motion of the toy plane due to an imposed force on it representing rigid body
motion. There is no movement of the underlying fluid.

Figure D.1 shows the motion of a toy plane in a bucket of water. The plane has been given
a force to move by itself. There is no motion of water. This is evident by the reflection of the
lamp which remains static in all the three pictures. This set of pictures represents the usual way
of determining motion of the rigid body(plane) using optical flow method. There is no motion
near the boundary of the domain and hence boundary conditions are trivial in this case.

(a) (b) (c)

Figure D.2: Motion of the toy plane due to movement of water.

Figure D.2 shows the motion of the toy plane due to motion of water. A vortex is imparted to
the water in the bucket and the plane moves under its action. This is evident by the disturbance
in the reflection of the lamp. This is the case we investigate in our thesis. We use optical flow
techniques to capture motion due to fluid flows by tracing scalars(plane) propagated by the
flow.
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[90] C. Schnörr. Determining Optical Flow for Irregular Domains by Minimizing Quadratic
Functionals of a Certain Class. International Journal of Computer Vision, 6:1, 25-38
(1991).

[91] B. G. Schunck. Image flow segmentation and estimation by constraint line clustering.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(10):1010–1027,
October 1989.

[92] E. Simoncelli, E. Adelson, and D. Heeger. Probability distributions of optical flow. In
Proc. CVPR, 310–315, 1991.

[93] S. Soatto and A. J. Yezzi. Deformotion - Deforming Motion, Shape Average and the Joint
Registration and Segmentation of Images. International Journal of Computer Vision. ,
53:153–167, 2003.

[94] A. Spoerri and S. Ullman. The early detection of motion boundaries. In Proc. 1st ICCV,
pages 209–218, London, UK, June 1987.

[95] J. E. Stout, D. W. Martin, and D. N. Sikdar. Estimating GATE rainfall with geosyn-
chronous satellite images. Mon. Wea. Rev., 107:585–598, 1979.

[96] M. J. Tarr and M. J. Black. A computational and evolution- ary perspective on the
role of representation in computer vision. Technical Report YALEU/DCS/RR-899, Yale
University, October 1991.

[97] W. B. Thompson. Combining motion and contrast for segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, AMI-2:543–549, 1980.

[98] W. B. Thompson, K. M. Mutch, and V. Berzins. Edge detection in optical flow fields. In
Proc. of the Second National Conference on Artificial Intelligence, pages 26–29, August
1982.

[99] W. B. Thompson, K. M. Mutch, and V. A. Berzins. Dynamic occlusion analysis in
optical flow fields. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence,
PAMI-7(4):374–383, July 1985.
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