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Abstract A variational approach is used to recover fluid motion governed by
Stokes and Navier-Stokes equations. Unlike previous approaches where optical
flow method is used to track rigid body motion, this new framework aims at
investigating incompressible flows using optical flow techniques. We formulate
a minimization problem and determine conditions under which unique solu-
tion exists. Numerical results using finite element method not only support
theoretical results but also show that Stokes flow forced by a potential are
recovered almost exactly.
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1 Introduction

Our motivation for the present study is to understand cloud motion from
satellite images. This in turn will help us in understanding the movement of
rain bearing clouds during the monsoon over the Indian subcontinent. Previ-
ous work in this direction are [1–5]. The methodology is to obtain fluid flow
estimates from given image sequences by incorporating physical constraints
into a variational approach to optical flow method (OFM). However, a major
problem in applying OFM to fluid flow, leave alone cloud motion is that the
connection between optical flow in the image plane and fluid flow in the 3D
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world is yet to be understood satisfactorily [6]. Given this state of affairs we
propose to apply OFM to images that are generated synthetically by solving
the 2D incompressible Stokes and Navier Stokes equation. Our aim is to track
movement of vortex structures generated by solving the 2D incompressible
Stokes and Navier-Stokes equation. In the context of optical flow methods the
first major known work is the Horn-Schunck algorithm, which implements a
constraint free first order regularization approach with a finite differencing
scheme [7]. The method was devised to capture rigid body motion. There are
no fluid flow constraints. The first known related work of applying OFM to
estimate fluid flow is [8]. The authors estimate optical flow involving prior
knowledge that the flow satisfies Stokes equation. They formulate a minimiza-
tion problem based on the Horn-Schunck functional and determine the optimal
source term and the boundary velocity coming from a incompressible Stokes
equation to recover the flow completely. While this approach is suitable if not
much is known about the flow, it restricts the class of recovered incompressible
flows to only Stokes flow. The second work connecting OFM to fluid flow is [9].
The authors minimize the Horn-Schunck functional with higher order regular-
ization incorporating the incompressibility constraint coupled with mimetic
finite differencing scheme. Such an approach with higher regularization term
turns out to be costly and it increases the regularity of the fluid velocity field,
which is not the case in usual flows. Motivated by these works, our aim is to
investigate a class of incompressible flows using OFM. We do not constrain our
flow to be Stokes flow as in [8] or use higher order regularization terms as in
[9]. Instead a minimization problem is formulated based on the Horn-Schunck
functional and the incompressibility constraint. An extensive analysis has been
performed on our OFM to show that one can recover a class of Stokes flow
exactly. This approach can then be extended to recover even Navier-Stokes
flows.

It is well known [7] that tracking rigid body motion by OFM can be done
satisfactorily using nonlinear least squares technique whereas it is totally in-
adequate for fluid flow [10]. This is because rigid body motion has features
like geometric invariance where local features such as corners, contours etc.,
are usually stable over time [11]. However, for fluid images these features are
difficult to define leave alone being stable. This is one of the main problems in
understanding the connection between optical flow and fluid flow [12–15]. To
recover fluid-type motions, a number of approaches has been proposed to inte-
grate the basic optical flow solution with fluid dynamics constraints, e.g., the
continuity equation that describes the fluid property [14,16] or the divergence-
curl (div-curl) equation [14,17] to describe spreading and rotation. The main
aim of our work is to track fluid flow at each instant of time by tracing pas-
sive scalars which are propagated by the flow using simple flow dynamics and
specifying appropriate boundary conditions. In other words, we use optical
flow techniques to efficiently track fluid flow motion. Such a work has its im-
portance in determining atmospheric motion vectors (AMV), tracking smoke
propagation, determining motion of tidal waves using floating buoys. Since the
basic idea in the variational approach is not to estimate locally and individ-
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ually but to estimate non-locally by minimizing a suitable functional defined
over the entire image section, we therefore prefer a variational approach.

The paper is organised as follows. In Section 2, a minimization problem is
formulated with a first order regularization term under the incompressibility
constraint. In Section 3, we derive conditions on the image under which unique
solution exists. Section 4 presents an outcome of the present work which shows
when the real unknown flow observed through images comes from a Stokes flow
forced by a potential, then we are able to recover the velocity almost exactly
even for very small viscosity coefficient. In Section 5, continuous Galerkin finite
element method is used to solve the resulting set of equations using FENICS
[18]. The reason for using finite element method for the variational model
arises from the fact that the numerical experiments done with finite element
method for the Horn-Schunck model to track underlying flows gave excellent
results [19]. Section 6 investigates motion satisfying Stokes and Navier-Stokes
flows by performing numerical experiments on four test cases for low and high
Reynolds number flows. Section 7 summarizes the results obtained.

2 Variational Formulation

To estimate fluid flow, we trace passive scalars that are propagated by the
flow. Examples of such scalars are smoke, brightness patterns of dense rain-
bearing clouds whose intensity remains constant atleast for a short time span.
These scalars can be represented by a function E : Ω × R+ −→ R so that
E(x, y, t) for (x, y) ∈ Ω represents a snapshot of the image of the scalars
at time t ∈ R+. Here Ω is a bounded convex subset of R2. Let us assume
our image E(x, y, t) ∈ W 1,∞(Ω), for each t and hence in L2(Ω) (as Ω is
bounded). Let the field of optical velocities over Ω at a fixed time t = t0 be
U(x, y, t0) = (u, v)(x, y, t0) and X = (H1(Ω))2. Define the functional,

J(U) =
1

2

∫
Ω

(Et + U · ∇E)2dxdy +
K

2

∫
Ω

‖∇U‖2dxdy, K > 0 (1)

where Et and ∇E are evaluated at t = t0, and

‖∇U‖2 = ‖∇u‖2 + ‖∇v‖2.

Without loss of generality, let t0 = 0. The first term in (1) represents the
constant brightness assumption of the tracers. The second term represents a
regularization term for the flow velocities. Such a functional was first consid-
ered by Horn and Schunck[7] and subsequently by many others [24–27,12,28]
to efficiently estimate rigid body motion. Here it is used to track the under-
lying fluid flow motion. Such a connection between optical flow and fluid flow
tracking is essential because if a proper connection is found, techniques from
optical flow to determine high-resolution velocity fields from various images in
continuous patterns can then be used. To use (1) to track fluid flows, we need
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to include fluid dynamics and enforce proper boundary conditions. Hence, we
enforce the incompressible fluid flow constraint

∇ · U = 0. (2)

The minimization problem can be stated as

min
U∈X

{J(U)| ∇ · U = 0}. (P)

The boundary conditions on the flow velocity could be either Dirichlet or
Neumann.

3 Existence and Uniqueness Of Minimizer

We show existence and uniqueness of minimizer for the Problem (P). Before
that we state some standard definitions and results.

3.1 Preliminary Results

Let (Z, ‖ · ‖Z) be a Banach space.

Theorem 1 Let J : Z → R ∪ {−∞,∞} be a convex functional on Z. If J is
bounded from above in a neighbourhood of a point U0 ∈ Z, then, it is locally
bounded i.e., each U ∈ Z has a neighbourhood on which J is bounded.

Definition 1 A functional J defined on Z is said to be locally Lipschitz if
at each U ∈ Z there exists a neighbourhood Nε(U) and a constant R(U) such
that if V,W ∈ Nε(U), then

|J(V )− J(W )| ≤ R‖V −W‖Z .

If this inequaltiy holds throughout a set Y ⊆ Z with R independent of U , then
we say that J is Lipschitz on Y .

Theorem 2 Let J be convex on Z. If J is bounded from above in a neigh-
bourhood of one point of X, then J is locally Lipschitz in Z.

Theorem 3 Let J be convex on Z. If J is bounded from above in an neigh-
bourhood of one point of Z, then J is continuous on Z.

Theorem 1, 2, 3 and Definition 1 can be found in [29]. The following theorem
from [20] is used to establish an unique global minimizer for (P).

Theorem 4 (Existence and uniqueness of global minimizer) Let J :
Z → R∪{−∞,∞} be a lower semi-continuous strictly convex functional. Also,
let J be coercive i.e.,

lim
‖U‖Z→+∞

J(U) =∞.

Let C be a closed and convex subset of Z. Then J has a unique global minimum
over C.
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Let us now verify the conditions stated in Theorem (4) for the functional J
in (1). Let H = L2(Ω), H1 = (L2(Ω))2 and Z = X with norms ‖U‖H =
‖u‖L2(Ω) + ‖v‖L2(Ω) and ‖U‖Z = ‖u‖H1(Ω) + ‖v‖H1(Ω).

Theorem 5 The functional given in (1) is strictly convex with respect to U
under the assumption that Ex and Ey are linearly independent.

Proof Let U1 =

(
u1
v1

)
and U2 =

(
u2
v2

)
where (·) is the usual inner product

on R2. Then, for 0 < α < 1 and U1 6= U2, we have

J(αU1 + (1− α)U2) =
1

2

∫
Ω

((αU1 + (1− α)U2) · ∇E) + Et)
2dxdy

+
K

2

∫
Ω

[
‖∇(αu1 + (1− α)u2)‖2+‖∇(αv1 + (1− α)v2)‖2

]
dxdy

≤ 1

2

∫
Ω

[
{(αU1 + (1− α)U2) · ∇E}2 + 2E2

t + 2Et{(αU1 + (1− α)U2) · ∇E}
]
dxdy

+
K

2

∫
Ω

[
‖(α∇u1 + (1− α)∇u2)‖2 + ‖(α∇v1 + (1− α)∇v2)‖2

]
dxdy.

Let a, b ∈ R and A, B ∈ R2, with inner product

(A,B) = A1B1 +A2B2

and norm
‖A‖2 = A2

1 +A2
2

where A = (A1, A2) and B = (B1, B2).
Then, for 0 ≤ α ≤ 1, we have,

[αa+ (1− α)b]
2

= α2a2 + (1− α)2b2 + α(1− α)2ab

≤ α2a2 + (1− α)2b2 + α(1− α)(a2 + b2),

(by Young’s inequality)

= αa2 + (1− α)b2,

where equality holds iff a = b and,

‖(αA+ (1− α)B)‖2 = α2‖A‖2 + (1− α)2‖B‖2 + α(1− α) · 2(A,B)

≤ α2‖A‖2 + (1− α)2‖B‖2 + α(1− α)(‖A‖2 + ‖B‖2)

(by Young’s inequality)

= α‖A‖2 + (1− α)‖B‖2,

where equality holds iff A = B.
Thus,

K

2

∫
Ω

[
‖(α∇u1 + (1− α)∇u2)‖2 + ‖(α∇v1 + (1− α)∇v2)‖2

]
dxdy

≤K
2

(
α

∫
Ω

[
‖∇u1‖2 + ‖∇v1‖2

]
dxdy + (1− α)

∫
Ω

[
‖∇u2‖2 + ‖∇v2‖2

]
dxdy

)
,

(3)
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and ∫
Ω

[(αU1 + (1− α)U2) · ∇E]
2
dxdy ≤ α

∫
Ω

(U1 · ∇E)2dxdy

+(1− α)

∫
Ω

(U2 · ∇E)2dxdy.

(4)

Equality holds in (3) iff

∇u1 = ∇u2, ∇v1 = ∇v2 (5)

and in (4) iff

U1 · ∇E = U2 · ∇E. (6)

From (5) we have

u1 − u2 = c1, v1 − v2 = c2 (7)

where c1 and c2 are constants. From (6) we get

Ex(u1 − u2) + Ey(v1 − v2) = 0. (8)

But as Ex and Ey are linearly independent, (7) and (8) gives

u1 = u2, v1 = v2,

which implies

U1 = U2.

Hence, for U1 6= U2 we have,∫
Ω

((αU1+(1−α)U2)·∇E)2dxdy < α

∫
Ω

(U1·∇E)2dxdy+(1−α)

∫
Ω

(U2·∇E)2dxdy.

This gives,

J(αU1 + (1− α)U2) < αJ(U1) + (1− α)J(U2), 0 < α < 1. (9)

Thus J is a strictly convex functional with respect to U .

Next, we state a result showing that the constraint set (2) is a closed subspace
of Z, which can be proved by standard arguments (for e.g., see [30]).

Theorem 6 The constraint set (2) given as C = {U ∈ Z : ∇ · U = 0} is a
closed subspace of Z.

Thus, J is a strict convex function defined on H and the constraint set (2)
denoted as K is a closed subspace of Z. We now show that J is continuous
and coercive.

Theorem 7 The functional J as given in (1) is continuous
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Proof We will use the Theorem 3 to prove our statement. We assume

‖E‖W 1,∞(Ω) ≤M.

As 0 ∈ Z, we consider a neighbourhood of zero given as N1 = {U : ‖U‖Z < 1}.
Now

|J(U)| =
∣∣∣∣12
∫
Ω

(U · ∇E + Et)
2
dxdy +

K

2

∫
Ω

[
‖∇u‖2 + ‖∇v‖2

]
dxdy

∣∣∣∣
≤ 1

2

∫
Ω

(U · ∇E + Et)
2
dxdy +

K

2
‖U‖2Z

≤ 1

2

∫
Ω

(
E2
t + (U · ∇E)2 + 2Et(U · ∇E)

)
dxdy +

K

2
‖U‖2Z .

Using Hölder’s inequality and L∞ bound on E and its derivatives, we get

|J(U)| ≤ 1

2

∫
Ω

[
M2 +M2(u+ v)2

]
dxdy

+ 2M

(∫
Ω

(∇E)2
)1/2(∫

Ω

U2

)1/2

dxdy +
K

2
‖U‖2Z

≤ M2

2

∫
Ω

[
1 + 2(u2 + v2)

]
dxdy +M(

∫
Ω

M2)1/2‖U‖Z +
K

2
‖U‖2Z

≤ M2

2
(

∫
Ω

1) +M2‖U‖2Z +M2(

∫
Ω

1) +
K

2
‖U‖2Z

<
3M

2
µ(Ω) +M2 +

K

2
( as ‖U‖Z < 1)

<∞,

where µ(Ω) is the measure of Ω. This gives us J(U) is bounded above in N1.
As J is convex (by Theorem 5), it implies J is continuous for all U ∈ Z (by
Thoerem 3).

Theorem 8 The functional J as given in (1) is coercive under the assumption
that Ex and Ey are linearly independent.

Proof The functional J in (1) can be written as

J(U) = J1(U) +

∫
Ω

{E2
t + 2Et(U · ∇E)}dxdy

where,

J1(U) =

∫
Ω

(U · ∇E)2dxdy +
K

2

∫
Ω

‖∇U‖2dxdy. (10)

To show J(U) is coercive, we need to show J1(U) is coercive as it is quadratic
in U . We use the Poincare-Wirtinger’s Inequality∫

Ω

(U − T )2dxdy ≤ D
∫
Ω

‖∇U‖2dxdy (11)
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where,

T =
1

µ(Ω)

∫
Ω

Udxdy (12)

and D is a constant depending on Ω. Suppose, J1 is not coercive. Then there
does not exist any constant M > 0 such that

J1(U) ≥M‖U‖2Z ∀U ∈ Z

because if it was so then J1 → ∞ as ‖U‖Z → ∞. So for any M > 0 there
exists UM ∈ Z such that

J1(UM ) < M‖UM‖2Z .

We choose M = 1
n and get a sequence of Mn’s and correspondingly get Un.

Without loss of generality, let us assume ‖Un‖Z = 1. If not, we can take
Vn = Un

‖Un‖Z and replace Un with Vn. So we get a sequence {Un}n∈N in Z with

‖Un‖Z = 1 and J1(Un)→ 0 as n→∞. Using (10) and (11) we have∫
Ω

(un − T 1
n)2dxdy → 0 (13)

and ∫
Ω

(vn − T 2
n)2dxdy → 0 for n→∞, (14)

where,

T 1
n =

1

µ(Ω)

∫
Ω

undxdy, T 2
n =

1

µ(Ω)

∫
Ω

vndxdy.

As ∫
Ω

(Exu+ Eyv)2dxdy ≤ 2|E2
x|∞

∫
Ω

u2dxdy + 2|E2
y |∞

∫
Ω

v2dxdy,

we have ∫
Ω

(
Ex(un − T 1

n) + Ey(vn − T 2
n)
)2
dxdy → 0 as n→∞. (15)

Now(∫
Ω

(ExT
1
n + EyT

2
n)2dxdy

)1/2

=

(∫
Ω

(Exun + Eyvn + Ex(T 1
n − un) + Ey(T 2

n − vn))2dxdy

)1/2

≤
(∫

Ω

(Exun + Eyvn)2dxdy

)1/2

+

(∫
Ω

(Ex(T 1
n − un) + Ey(T 2

n − vn))2dxdy

)1/2

≤ (J1(Un))
1/2

+

(∫
Ω

(Ex(T 1
n − un) + Ey(T 2

n − vn))2dxdy

)1/2

→ 0 for n→∞. (Using (15))
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Let a = ExT
1
n , b = EyT

2
n . Then,

‖a+ b‖2H = ‖a‖2H + ‖b‖2H + 2(a, b)H

≥ ‖a‖2H + ‖b‖2H − 2‖a‖H‖b‖H
|(a, b)|H
‖a‖H‖b‖H

≥ ‖a‖2H + ‖b‖2H − (‖a‖2H + ‖b‖2H)
|(a, b)|H
‖a‖H‖b‖H

= (‖a‖2H + ‖b‖2H){1− |(a, b)|H
‖a‖H‖b‖H

},

where (a, b)H is the usual inner product in H. Thus we get∫
Ω

(ExT
1
n+EyT

2
n)2dxdy ≥

(
‖Ex‖2H(T 1

n)2 + ‖Ey‖2H(T 2
n)2
)
{1− |(Ex, Ey)|H

‖Ex‖H‖Ey‖H
}.

(16)
As left hand side of (16) → 0 as n → ∞ and by linear independency of Ex
and Ey,

1− |(Ex, Ey)|H
‖Ex‖H‖Ey‖H

> 0

and since ‖Ex‖H and ‖Ey‖H are not identically 0, we have

T 1
n → 0 and T 2

n → 0 as n→∞. (17)

But this gives a contradiction as ‖Un‖Z ≤ ‖(Un − Tn)‖Z + ‖Tn‖Z and hence
‖Un‖Z → 0 as n→∞ (using (13),(14),(17)). So J1 is coercive and hence J is
coercive.

By Thoerem 4, the problem (P) has an unique global minimum.

4 Exact recovery of Stokes flow

We now write down the optimality conditions for the minimizer of (P). Using
Lagrange multipliers, the auxillary functional can be written as

J̃(U, p) =
1

2

∫
Ω

(Et + U · ∇E)2 dxdy +
K

2

∫
Ω

‖∇U‖2 dxdy +

∫
Ω

(∇ · U)p dxdy

Taking Gateaux derivative of J̃ with respect to U and p, the standard opti-
mality conditions [23] are

∂J̃

∂U
= 0 and

∂J̃

∂p
= 0. (18)
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The first equation in (18) gives∫
Ω

(Et + (U · ∇E))(U · ∇E) +K

∫
Ω

(∇u·∇u) + (∇v·∇v)+

∫
Ω

(∇ · U)p = 0,

∀ U ∈ Z
(19)

with prescribed Dirichlet boundary conditions

U = Ub on ∂Ω. (20)

The second equation in (18) gives∫
Ω

(∇ · U)p = 0, ∀p ∈ L2(Ω). (21)

Let
Zb = {U ∈ Z : U = Ub on ∂Ω}. (22)

Performing an integration by parts on the second term on the left in (19) and
taking U to be an arbitrary function in Z, together with (21), the following
PDE is obtained

K∆U −∇p = −(Et + U · ∇E)∇E
∇ · U = 0

(23)

subject to (20), where (U, p) ∈ (Z ∩ Zb)× (L2(Ω) \ R).

Remark 1 We use the space for pressure as L2(Ω) \ R so that in the discrete
formulation we can look for a pressure whose value is specified at a point. [31,
Remark 9.1.1]

Theorem 9 Let E in the right hand side of (23) be advected with velocity Ue
i.e.,

Et + Ue · ∇E = 0

with Ue satisfying (20) and incompressible Stokes equation

α∆Ue +∇q = f, α > 0

∇ · Ue = 0.
(24)

If f is given by a potential f = ∇φ for smooth φ, then U = Ue is the only
solution of (23), which is independent of any K > 0. In other words, the flow
is recovered exactly irrespective of K.

Proof Eq. (23) can rewritten as

α∆U − α

K
∇p = − α

K
(Et + U · ∇E)∇E (25)

Since f = ∇φ, Eq. (24) can be rewritten as

α∆Ue +∇(q + φ) = 0.

As the image E is advected with velocity, Ue is a solution of Eq. (25) with
p = −Kα (q + φ) and right hand side as zero. As the solution of (23) is unique,
U = Ue is the unique solution of (23), which is independent of any K > 0.
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The result of Theorem 9 is verified in the numerical examples in Section 6
where we have considered incompressible Stokes flow under various boundary
conditions and find that the flow is recovered with a high precision. Also as
Navier-Stokes flow at low Reynolds number represents Stokes flow, we recover
low Reynolds number Navier-Stokes flow exactly.

5 Finite element method for the Optical flow problem (1)

Eq. (23) is solved using the finite element method. Combining equations (19)
and (21) along with the boundary conditions (20) gives the weak formulation
of the PDE to be solved to determine the minimizer. Let Th be a triangulation
of domain Ω and let K be a triangle in Th. Let Zh and Xh be two finite
element spaces with triangulation parameter h such that

Zh ⊂ Z, Xh ⊂ L2(Ω).

Then the discrete problem is to find (Uh, ph) ∈ (Zh ∩ Zb)×Xh such that∫
Ω

(Et + (Uh · ∇E))(∇E·Uh) +K

∫
Ω

(∇uh·∇uh) + (∇vh·∇vh) +

∫
Ω

(∇ · Uh)ph = 0∫
Ω

(∇ · Uh)ph = 0

(26)
where, (Uh, ph) ∈ Zh ×Xh.
Let us define the following Taylor-Hood finite element spaces

Zh(Ω) = {Uh ∈ (C0(Ω))2 : Uh|K is a polynomial of degree 2 and Uh = 0 on ∂Ω}
(27)

and

Xh(Ω) = {ph ∈ C0(Ω) : ph|K is a polynomial of degree 1}, (28)

which satisfy the LBB condition [22]. Using this condition, one can show that
there exists an unique solution (Uh, ph) ∈ (Zh ∩Zb)×Xh [31, Eq. 9.2.10]. We
now describe the procedure to determine E,Et and ∇E.

5.1 Image data

Our aim is to generate a sequence of synthetic images E and try to recover
the velocity given the information of the derivatives of E. For this purpose
E is chosen whose analytic expression is known at time t = 0 and hence its
gradients can be computed exactly. To advect E with velocity Ue exactly, Et
at t = 0 is generated from the equation

Et(x, y, 0) = −Ue · ∇E(x, y, 0)
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where Ue represents the velocity obtained by solving incompressible Stokes
flow

∆U +∇p = f

∇ · U = 0,
(29)

or Navier-Stokes flow

−α∆U+(U · ∇)U +∇p = f,

∇ · U = 0,
(30)

using finite element method with appropriate boundary conditions, where α =
1/Re and Re is the Reynolds number. In practice, derivatives of images will
be computed using some finite differences which will introduce errors in the
computed velocity.

5.2 Test Flows

Two types of flows are considered: one in a lid-driven cavity and the other past
a cylinder. For flows in a lid-driven cavity, the domain is Ω = [0, 1]Ö[0, 1]. The
boundary conditions are

U =

{
(1, 0) on y = 1
(0, 0) elsewhere

(31)

with image at time t0 defined as

E0(x, y) = E(x, y, 0) = e−50[(x−1/2)
2+(y−1/2)2].

Fig. 1: Image at time t = 0
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Fig. 2: Image at time t = 0

For flows past a cylinder, the domain Ω is a rectangle in R2 given as
[0, 2.2] × [0, 0.41] with a closed disk inside it centered at (0.2, 0.2) and radius
0.05. The boundary conditions are

U =

{
(0, 0) on y = 0, y = 0.41 and on the surface of the disk

(0, 6y(0.41−y)0.412 ) on x = 0
(32)

with image at time t0 defined as

E0(x, y) = E(x, y, 0) = e−50[(x−1.1)
2+(y−0.2)2].

To compute Ue, Eq. (29) or (30) is solved subject to the boundary conditions
given in (31) or (32). But exact analytic expressions of solutions to (29) or
(30) with the specified boundary conditions are usually not known. Thus finite
element method is used to obtain Ue.

5.3 Mesh

For flows in a lid-driven cavity, the domain Ω = [0, 1] × [0, 1] is triangulated
with 100 points on each side as shown in Figure 3. There are 20000 triangles
with 10201 degrees of freedom. For flows past a cylinder, the mesh used is
shown in Figure 4. It comprises of 200 points on the longer boundary, 80 points
on the shorter boundary and 100 points on the circular boundary. There are
28582 triangles with 14605 degrees of freedom.

5.4 Solving the Stokes equation

To solve (29), let us write the weak formulation as: find U ∈ Zb defined in (22)
and p ∈ L2(Ω) \ R such that∫
Ω

∇U ·∇V +

∫
Ω

(∇·V )p+

∫
Ω

(∇·U)q+

∫
Ω

f ·V = 0, ∀(V, q) ∈ Z×L2(Ω).

(33)
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Fig. 3: Zoomed view of mesh for the lid-driven cavity flows.

Fig. 4: Zoomed view of mesh for the lid-driven cavity flows.

We also fix the value of p to be zero at a point X0 ∈ ∂Ω to obtain uniqueness
thus being consistent with the space for pressure (see Remark 1). The discrete
problem is to find (Uh, ph) ∈ (Zh ∩ Zb)×Xh such that∫
Ω

∇Uh·∇Vh−
∫
Ω

(∇·Vh)ph−
∫
Ω

(∇·Uh)qh =

∫
Ω

f ·Vh, ∀(Vh, qh) ∈ Zh×Xh,

(34)
where Zh and Xh are defined in (27) and (28) respectively. Solving Eq. (34)
with domains, boundary conditions and meshes defined in Sections 5.2 and 5.3
gives Ue.

5.5 Solving the Navier-Stokes equation

Eq. (30) is a non-linear equation in U . The method of Picard iteration, which
is an easy way of handling nonlinear PDEs, is thus used. In this method, a
previous solution in the nonlinear terms is used so that these terms become
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linear in the unknown U . The strategy is also known as the method of succes-
sive substitutions [21]. In our case, we seek a new solution Uk+1 in iteration
k + 1 such that (Uk+1, pk+1) solves the linear problem

−α∆Uk+1+(Uk · ∇)Uk+1 +∇pk+1 = f,

∇ · Uk+1 = 0
(35)

with given boundary conditions, where Uk is known. The variational formu-
lation for (35) can be written as: find Uk+1 ∈ Zb = {U ∈ Z : U = Ub on ∂Ω}
and pk+1 ∈ L2(Ω) \ R such that∫
Ω

α∇Uk+1 · ∇V +

∫
Ω

[
(Uk · ∇)Uk+1

]
· V −

∫
Ω

(∇ · V )pk+1 −
∫
Ω

(∇ · Uk+1)q

−
∫
Ω

f · V = 0, ∀(V, q) ∈ Z × L2(Ω).

(36)
We start with initial guess U0 = (0, 0) and employ the finite element method
as described in Section (5.4) to determine Uk+1. Finally, we stop at the k + 1th

stage if ‖Uk+1 − Uk‖ < ε. We choose ε = 10−7. Hence we have Ue = Uk+1.
The convergence of the fixed point iteration method (36) has been shown in
[32, Sec 6.3].
Finally, the relative L2 error in velocity is defined as

Relative L2 error =
‖Ue − Uo‖
‖Ue‖

(37)

and the advection error is defined as

Advection Error = ‖Et + Uo · ∇E‖ (38)

where Ue is the exact velocity and Uo is the obtained velocity and the norm
‖ · ‖ is the usual L2 norm for vector functions as defined earlier.

6 Numerical Examples

6.1 Stokes Flow in a lid driven cavity

The exact flow is given by solving (29) with f = (1, 100) in lid-driven cavity.
Figure (5) shows plots of velocity vectors for various K. The velocity is recov-
ered with a very high degree of accuracy. This is also reflected in the relative
L2 errors given in Table (1). Also, Table (1) shows that the advection errors are
very small and so the recovered velocity preserves the advection properties of
the image. The streamline plots for the velocity given in Figures (6) show that
large vortex in the center and the two small vortices at the bottom corners are
detected with good accuracy, which is actually very important in atmospheric
flows. It is notable that the regularization parameter K has minimal effect
on the behaviour of the solutions, which is consistent with the fact that it is
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(a) Exact (b) K=0.001

(c) K=5 (d) K=35

Fig. 5: Velocity plots for Stokes flow in a lid driven cavity

K Relative L2 Error Advection Error

0.001 4.55e-08 9.62e-26
5 4.56e-08 6.83e-27

110 4.49e-08 2.51e-27
300 4.48e-08 4.11e-27
600 4.42e-08 3.57e-28

Table 1: Variation of relative L2 error and advection error with K for Stokes
flow in a lid driven cavity

not a physical parameter and hence, any positive value of K can be used to
determine the velocity. This perfectly justifies the result proved in Theorem
9.
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(a) Exact (b) K=0.001

(c) K=5 (d) K=35

Fig. 6: Streamline plots for Stokes flow in a lid driven cavity

6.2 Stokes flow past a cylinder

The exact flow is given by solving (29) as a flow past a cylinder with f =
(1, 100). Figure (7) shows plots of velocity vectors for various K. Again the
velocity is recovered with a very high degree of accuracy. Table (2) shows the
relative L2 errors and the advection errors, which are quite small, justifying
good recovery of flows. The streamline plots for the velocity is given in Figure
(8). As with the case of Stokes flow in a lid driven cavity, there is no dependence
of the obtained solutions on K.

6.3 Navier-Stokes flow in a lid driven cavity for Re = 1 and 1000

Here we consider motion governed by Navier-Stokes flows for Re = 1 and 1000.
The exact flow is given by solving (30) with f = (1, 100) in a lid-driven cavity.
Figures (9) and (11) show the velcity vector plots for Re = 1 and Re = 1000
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(a) Exact

(b) K=0.001

(c) K=5

(d) K=35

Fig. 7: Velocity plots for Stokes flow past a cylinder
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(a) Exact

(b) K=0.001

(c) K=5

(d) K=35

Fig. 8: Streamline plots for Stokes flow past a cylinder
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K Relative L2 Error Advection Error

0.001 1.44e-8 3.76e-28
5 1.53e-8 6.43e-27

110 1.47e-8 6.69e-28
300 1.42e-8 5.25e-28
600 1.69e-8 5.32e-28

Table 2: Variation of relative L2 error and advection error with K for Stokes
flow past a cylinder

K Relative L2 Error Advection Error

0.001 3.56e-4 2.7e-11
5 3.61e-4 2.8e-11

110 3.44e-4 3.1e-11
300 3.48e-4 2.9e-11
600 3.4e-4 2.6e-11

Table 3: Variation of relative L2 error and advection error with K for Navier-
Stokes flow in a lid driven cavity for Re = 1

K Relative L2 Error Advection Error

0.001 5.81e-1 2.8e-8
5 5.95e-1 3.6e-8

110 6.12e-1 4.1e-8
300 6.07e-1 2.5e-8
600 5.86e-1 5.2e-8

Table 4: Variation of relative L2 error and advection error with K for Navier-
Stokes flow in a lid driven cavity for Re = 1000

respectively. The plots show good recovery for Re = 1, whereas for Re = 1000
the relative L2 error is on the higher side. This is also reflected in Tables
(3) and (4). The streamline plots given by Figures (10), (12) show that for
lower Reynolds number flows the vortices are well recovered whereas for higher
Reynolds number flows the vortices are recovered though not to a greater de-
gree of accuracy. Tables (3) and (4) suggests that the advection error for lower
Reynolds number flows is very low compared to higher Reynolds number flows.
This is because at low Reynolds number, Navier-Stokes flows represents Stokes
flows and hence they are recovered well. For higher Reynolds number flows,
the non-linear convection term dominates and so a very good flow recovery
is not possible with our linear model. However, we note that even for higher
Reynolds number flows, the solution obtained is independent of K.

6.4 Navier-Stokes flow past a cylinder.

The exact flow is given by solving (30) as a flow past a cylinder with f =
(1, 100). Figures (13) and (15) show the velocity vector plots for Re = 1 and
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(a) Exact (b) K=0.001

(c) K=5 (d) K=35

Fig. 9: Velocity plots for Navier-Stokes flow in a lid driven cavity for Re = 1

Re = 1000 respectively. The plots show good recovery for Re = 1, whereas for
Re = 1000 the relative L2 error is on the higher side, which is also reflected
in Tables (5) and (6). The streamline plots given by Figures (14) and (16)
show that vortices for low Reynolds number flows are captured well whereas
for higher Reynolds number flows, the vortices behind the cylinder are not
captured. This suggests there is a need to include extra assumptions in our
model for high Reynolds number flows.

7 Conclusion

A variational technique for tracking instantaneous motion from flow images
using the well-known OFM has been formulated. In the present work, these
flow images have been generated by numerically solving the 2D incompressible
Stokes equation (29) or the Navier-Stokes equations (30) for Re = 1 and 1000.
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(a) Exact (b) K=0.001

(c) K=5 (d) K=35

Fig. 10: Streamline plots for Navier-Stokes flow in a lid driven cavity for Re = 1

K Relative L2 Error Advection Error

0.001 1.01e-4 2.0e-11
5 1.11e-4 2.0e-11

110 1.24e-4 2.1e-11
300 1.15e-4 2.5e-11
600 1.08e-4 2.6e-11

Table 5: Variation of relative L2 error and advection error with K for Navier-
Stokes flow past a cylinder for Re = 1

Incompressibility is the only constraint imposed in the variational formulation.
Using FEM in the present variational approach method, it is shown that the
velocities are recovered almost exactly for Stokes flow forced by potential. For
Navier-Stokes flow the method performs very well for Re = 1 compared to
Re = 1000. This is because Stokes flow is a linearized version of the Navier-
Stokes flow for low Reynolds number. But nevertheless, in both the cases the
physical features of fluid flow like vortex structures are captured well. This
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(a) Exact (b) K=0.001

(c) K=5 (d) K=35

Fig. 11: Velocity plots for Navier-Stokes flow in a lid driven cavity for Re =
1000

K Relative L2 Error Advection Error

0.001 7.23e-1 4.3e-8
5 6.56e-1 4.6e-8

110 6.12e-1 4.6e-8
300 6.33e-1 4.5e-8
600 6.86e-1 4.7e-8

Table 6: Variation of relative L2 error and advection error with K for Navier-
Stokes flow past a cylinder for Re = 1000



24 Praveen Chandrashekar, Souvik Roy, A. S. Vasudeva Murthy

(a) Exact (b) K=0.001

(c) K=5 (d) K=35

Fig. 12: Streamline plots for Navier-Stokes flow in a lid driven cavity for Re =
1000

is particularly attractive for the cloud motion problem. The simplicity of our
variational approach makes it computationally attractive. In future, we plan
to extend this variational approach to track high Reynolds number flows as
well.
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(a) Exact

(b) K=0.001

(c) K=5

(d) K=35

Fig. 13: Velocity plots for Navier-Stokes flow past a cylinder for Re = 1
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(a) Exact

(b) K=0.001

(c) K=5

(d) K=35

Fig. 14: Streamline plots for Navier-Stokes flow past a cylinder for Re = 1
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(a) Exact

(b) K=0.001

(c) K=5

(d) K=35

Fig. 15: Velocity plots for Navier-Stokes flow past a cylinder for Re = 1000
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(a) Exact

(b) K=0.001

(c) K=5

(d) K=35

Fig. 16: Streamline plots for Navier-Stokes flow past a cylinder for Re = 1000
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